Research Article
BibTex RIS Cite

A Research on the Determination of Biogas Potential from Slaughterhouse Wastes and Livestock Manure in Türkiye

Year 2024, , 627 - 634, 15.07.2024
https://doi.org/10.34248/bsengineering.1463671

Abstract

Biogas, which is obtained as a result of the decomposition of organic materials in an oxygen-free environment, is one of the renewable energy sources. Today, biogas technology, which is preferred both in preventing environmental pollution and in producing clean energy without harming nature, is a method that is increasing its popularity and rapidly spreading. Turkiye's population is increasing day by day and accordingly, agricultural product production and energy consumption are also increasing. It is a necessity for our country, which is not self-sufficient in energy, to make the best use of its existing resources. In order to meet the meat needs of the increasing population in Turkiye, the number of livestock available is increasing accordingly. In parallel with this, the amount of fresh manure generated in farms, blood and rumen contents in slaughterhouses are also increasing. In this study, the amount of biogas that can be obtained from the blood and rumen contents of slaughtered livestock and the amount of biogas that can be obtained from the fresh manure amount of existing livestock were calculated using the data for 2022. According to the results of the study, the amount of biogas that can be obtained from slaughterhouse waste and farm animal manure is 24.495 billion m3 annually and the amount of electrical energy that can be obtained from this amount of biogas is 4.41×1010 kWh.

References

  • Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT. 2016. Potential of biogas production from farm animal waste in Malaysia. Renew Sustain Energy Rev, 60: 714-723.
  • Afazeli H, Jafari A, Rafiee S, Nosrati M. 2014. An investigation of biogas production potential from livestock and slaughterhouse wastes. Renew Sustain Energy Rev, 34: 380-386.
  • Akcan A, Gürdoğan T, Çetin İ. 1989. Farklı ağırlıklarda kesilen Holştayn besi danalarında kesim ve karkas özellikleri. Lalahan Hayvan Araş Enstit Derg, 29(1): 21-36.
  • Anonim. 2024a. https://avesis.iuc.edu.tr/resume/downloadfile/bekiz?key=518f9569-1ec9-4105-b5ac-019761acef95 (Erişim tarihi: 01 Mayıs 2024).
  • Anonim. 2024b. https://www.istib.org.tr/resim/siteici/files/K%C3%9CMES%20HAY_%20F%C4%B0RE%20VE%20RANDIMAN%20ORANLARI.pdf (Erişim tarihi: 01 Mayıs 2024).
  • ASAE. 2003. American society of agricultural engineers standards: D384. 1 FEB03 Manure Production and Characteristics. In: ASAE-The Society for engineering in agricultural, food, and biological systems 2950 Niles Rd., St. Joseph MI 49085-9659, US, pp: 145.
  • Avcıoğlu AO, Türker U. 2012. Status and potential of biogas energy from animal wastes in Turkey. Renew Sustain Energy Rev, 16(3): 1557-1561.
  • Chasnyk O, Sołowski G, Shkarupa O. 2015. Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine. Renew Sustain Energy Rev, 52: 227-239.
  • Christy PM, Gopinath L, Divya D. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev, 34: 167-173.
  • Cremiato R, Mastellone ML, Tagliaferri C, Zaccariello L, Lettieri P. 2018. Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production. Renew Ener, 124: 180-188.
  • Çelik İ, Demirer GN. 2015. Biogas production from pistachio (Pistacia vera L.) processing waste. Biocatalysis Agri Biotech, 4(4): 767-772.
  • Deublein D, Steinhauser A. 2011. Biogas from waste and renewable resources: an introduction. John Wiley & Sons. 2nd, Revised and Expanded edition, London, UK, pp: 578.
  • Gebrezgabher SA, Meuwissen MP, Prins BA, Lansink AGO. 2010. Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands. J Life Sci, 57(2): 109-115.
  • Hosseini SE, Wahid MA, Aghili N. 2013. The scenario of greenhouse gases reduction in Malaysia. Renew Sustain Energy Rev, 28: 400-409.
  • Hosseini SE, Wahid MA. 2014. Development of biogas combustion in combined heat and power generation. Renew Sustain Energy Rev, 40: 868-875.
  • Huang R, Mei Z, Long Y, Xiong X, Wang J, Guo T, Luo T, Long E. 2015. Impact of optimized flow pattern on pollutant removal and biogas production rate using wastewater anaerobic fermentation. BioResources, 10(3): 4826-4842.
  • Khalil M, Berawi MA, Heryanto R, Rizalie A. 2019. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renew Sustain Energy Rev, 105: 323-331.
  • Li, J, Wei L, Duan Q, Hu G, Zhang G. 2014. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresource Technol, 156: 307-313.
  • Mata-Alvarez J, Macé S, Llabres P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technol, 74(1): 3-16.
  • Nasir IM, Ghazi TIM, Omar R. 2012. Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Engin Life Sci, 12(3): 258-269.
  • Nasir IM, Ghazi TIM, Omar R, Idris A. 2013. Anaerobic digestion of cattle manure: Influence of inoculums concentration. Int J Eng Technol, 10: 22-26.
  • Nitsos C, Matsakas L, Triantafyllidis K, Rova U, Christakopoulos P. 2015. Evaluation of Mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation. BioMed Res Inter, 2015: 1-6.
  • Noorollahi Y, Kheirrouz M, Asl HF, Yousefi H, Hajinezhad A. 2015. Biogas production potential from livestock manure in Iran. Renew Sustain Energy Rev, 50: 748-754.
  • Omar R, Harun RM, Ghazi TIM, Wan Azlina WAKG, Idris A, Yunus R. 2008. Anaerobic treatment of cattle manure for biogas production. In Proceedings Philadelphia, annual meeting of American institute of chemical engineers, Nov. 16-21, Philadelphia, USA, pp: 1-10.
  • Omrani GH. 1996. Basics biogas production from urban and rural waste. University of Tehran Publication, Tehran, Iran, pp: 143.
  • Ounnar A, Benhabyles L, Igoud S. 2012. Energetic valorization of biomethane produced from cow-dung. Procedia Engin, 33: 330-334.
  • Özcan M, Öztürk S, Yıldırım M. 2011. Türkiye’nin farklı kaynak tiplerine göre biyogaz potansiyellerinin belirlenmesi. IV Enerji Verimliliği ve Kalitesi Sempozyumu, May 12-13, Kocaeli, Türkiye, ss: 243-247.
  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE. 2015. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engin J, 54(3): 745-756.
  • Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW. 2015. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sustain Energy Rev, 50: 346-362.
  • Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X. 2015. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev, 51: 521-532.
  • TÜİK. 2008. Tarımsal işletme yapı istatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=OlqjtHcAiEmiY7omrp4YGoBdIqa7T2rAPSv118vwpmm4/2mVRlTg8cmNVE4Ai3XL (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2023. Hayvancılık istatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=V1mSk31FCPOOW/3BFM8hxeRl/03kDePybsSkmwgPXbFFTwZeJ/RgajWYjzlkR2Yp (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2024a. Adrese dayalı nüfus kayıt sistemi sonuçları 2023. URL: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684. (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2024b. Tarım İstatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=CVXzOLEo2fd/A5OeYXrKR0AKCq9r/Rf7YQsRKqj3CRarD4rzA/RvgsX/JMWIBrcv (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2024c. Hayvancılık İstatistikleri. URL: https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111 (Erişim tarihi: 01 Mart 2024)
  • TÜİK. 2024d. Hayvancılık İstatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=2ceRS4u4nW0GZkNQMerJ34zZwjB2sIjUoOWlurUemNTunPvdm9GsRe6xxwFXrP3l (Erişim tarihi: 01 Mart 2024).
  • Williams JB, Shobrak M, Wilms TM, Arif IA, Khan HA. 2012. Climate change and animals in Saudi Arabia. Saudi J Biol Sci, 19(2): 121-130.
  • Yong Z, Dong Y, Zhang X, Tan T. 2015. Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy, 78: 527-530.

Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma

Year 2024, , 627 - 634, 15.07.2024
https://doi.org/10.34248/bsengineering.1463671

Abstract

Organik materyallerin oksijensiz ortamda çürütülmesi sonucu elde edilen biyogaz, yenilenebilir enerji kaynaklarından biridir. Günümüzde hem çevre kirliliğini önlemede hem de doğaya zarar vermeden temiz enerji üretiminde tercih edilen biyogaz teknolojisi, popülerliğini artıran ve hızla yaygınlaşan bir yöntemdir. Türkiye’nin nüfusu her geçen gün artmakta ve buna bağlı olarak tarımsal ürün üretimi ve enerji tüketimi de artmaktadır. Enerji konusunda kendi kendine yetemeyen ülkemizin mevcut kaynaklarını en iyi şekilde değerlendirmesi bir gerekliliktir. Türkiye’de artan nüfusun et ihtiyacının karşılanabilmesi için mevcut çiftlik hayvanı sayısı da buna bağlı olarak yükselmektedir. Buna paralel olarak çiftliklerde oluşan taze gübre miktarı, kesimhanelerde oluşan kan ve işkembe içerikleri de artmaktadır. Bu çalışmada 2022 yılı verileri kullanılarak kesilen çiftlik hayvanlarının kan ve işkembe içeriklerinden elde edilebilecek biyogaz miktarları ile mevcut çiftlik hayvanlarının taze gübre miktarından elde edilebilecek biyogaz miktarları hesaplanmıştır. Çalışma sonucuna göre kesimhane atıkları ve çiftlik hayvanlarının gübrelerinden elde edilebilecek biyogaz miktarı yıllık olarak 24,495 milyar m3 ve bu miktardaki biyogazdan elde edilebilecek elektrik enerjisi miktarı 4,41×1010 kWh’dir.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır

References

  • Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT. 2016. Potential of biogas production from farm animal waste in Malaysia. Renew Sustain Energy Rev, 60: 714-723.
  • Afazeli H, Jafari A, Rafiee S, Nosrati M. 2014. An investigation of biogas production potential from livestock and slaughterhouse wastes. Renew Sustain Energy Rev, 34: 380-386.
  • Akcan A, Gürdoğan T, Çetin İ. 1989. Farklı ağırlıklarda kesilen Holştayn besi danalarında kesim ve karkas özellikleri. Lalahan Hayvan Araş Enstit Derg, 29(1): 21-36.
  • Anonim. 2024a. https://avesis.iuc.edu.tr/resume/downloadfile/bekiz?key=518f9569-1ec9-4105-b5ac-019761acef95 (Erişim tarihi: 01 Mayıs 2024).
  • Anonim. 2024b. https://www.istib.org.tr/resim/siteici/files/K%C3%9CMES%20HAY_%20F%C4%B0RE%20VE%20RANDIMAN%20ORANLARI.pdf (Erişim tarihi: 01 Mayıs 2024).
  • ASAE. 2003. American society of agricultural engineers standards: D384. 1 FEB03 Manure Production and Characteristics. In: ASAE-The Society for engineering in agricultural, food, and biological systems 2950 Niles Rd., St. Joseph MI 49085-9659, US, pp: 145.
  • Avcıoğlu AO, Türker U. 2012. Status and potential of biogas energy from animal wastes in Turkey. Renew Sustain Energy Rev, 16(3): 1557-1561.
  • Chasnyk O, Sołowski G, Shkarupa O. 2015. Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine. Renew Sustain Energy Rev, 52: 227-239.
  • Christy PM, Gopinath L, Divya D. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev, 34: 167-173.
  • Cremiato R, Mastellone ML, Tagliaferri C, Zaccariello L, Lettieri P. 2018. Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production. Renew Ener, 124: 180-188.
  • Çelik İ, Demirer GN. 2015. Biogas production from pistachio (Pistacia vera L.) processing waste. Biocatalysis Agri Biotech, 4(4): 767-772.
  • Deublein D, Steinhauser A. 2011. Biogas from waste and renewable resources: an introduction. John Wiley & Sons. 2nd, Revised and Expanded edition, London, UK, pp: 578.
  • Gebrezgabher SA, Meuwissen MP, Prins BA, Lansink AGO. 2010. Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands. J Life Sci, 57(2): 109-115.
  • Hosseini SE, Wahid MA, Aghili N. 2013. The scenario of greenhouse gases reduction in Malaysia. Renew Sustain Energy Rev, 28: 400-409.
  • Hosseini SE, Wahid MA. 2014. Development of biogas combustion in combined heat and power generation. Renew Sustain Energy Rev, 40: 868-875.
  • Huang R, Mei Z, Long Y, Xiong X, Wang J, Guo T, Luo T, Long E. 2015. Impact of optimized flow pattern on pollutant removal and biogas production rate using wastewater anaerobic fermentation. BioResources, 10(3): 4826-4842.
  • Khalil M, Berawi MA, Heryanto R, Rizalie A. 2019. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renew Sustain Energy Rev, 105: 323-331.
  • Li, J, Wei L, Duan Q, Hu G, Zhang G. 2014. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresource Technol, 156: 307-313.
  • Mata-Alvarez J, Macé S, Llabres P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technol, 74(1): 3-16.
  • Nasir IM, Ghazi TIM, Omar R. 2012. Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Engin Life Sci, 12(3): 258-269.
  • Nasir IM, Ghazi TIM, Omar R, Idris A. 2013. Anaerobic digestion of cattle manure: Influence of inoculums concentration. Int J Eng Technol, 10: 22-26.
  • Nitsos C, Matsakas L, Triantafyllidis K, Rova U, Christakopoulos P. 2015. Evaluation of Mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation. BioMed Res Inter, 2015: 1-6.
  • Noorollahi Y, Kheirrouz M, Asl HF, Yousefi H, Hajinezhad A. 2015. Biogas production potential from livestock manure in Iran. Renew Sustain Energy Rev, 50: 748-754.
  • Omar R, Harun RM, Ghazi TIM, Wan Azlina WAKG, Idris A, Yunus R. 2008. Anaerobic treatment of cattle manure for biogas production. In Proceedings Philadelphia, annual meeting of American institute of chemical engineers, Nov. 16-21, Philadelphia, USA, pp: 1-10.
  • Omrani GH. 1996. Basics biogas production from urban and rural waste. University of Tehran Publication, Tehran, Iran, pp: 143.
  • Ounnar A, Benhabyles L, Igoud S. 2012. Energetic valorization of biomethane produced from cow-dung. Procedia Engin, 33: 330-334.
  • Özcan M, Öztürk S, Yıldırım M. 2011. Türkiye’nin farklı kaynak tiplerine göre biyogaz potansiyellerinin belirlenmesi. IV Enerji Verimliliği ve Kalitesi Sempozyumu, May 12-13, Kocaeli, Türkiye, ss: 243-247.
  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE. 2015. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engin J, 54(3): 745-756.
  • Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW. 2015. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sustain Energy Rev, 50: 346-362.
  • Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X. 2015. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev, 51: 521-532.
  • TÜİK. 2008. Tarımsal işletme yapı istatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=OlqjtHcAiEmiY7omrp4YGoBdIqa7T2rAPSv118vwpmm4/2mVRlTg8cmNVE4Ai3XL (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2023. Hayvancılık istatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=V1mSk31FCPOOW/3BFM8hxeRl/03kDePybsSkmwgPXbFFTwZeJ/RgajWYjzlkR2Yp (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2024a. Adrese dayalı nüfus kayıt sistemi sonuçları 2023. URL: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684. (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2024b. Tarım İstatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=CVXzOLEo2fd/A5OeYXrKR0AKCq9r/Rf7YQsRKqj3CRarD4rzA/RvgsX/JMWIBrcv (Erişim tarihi: 01 Mart 2024).
  • TÜİK. 2024c. Hayvancılık İstatistikleri. URL: https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111 (Erişim tarihi: 01 Mart 2024)
  • TÜİK. 2024d. Hayvancılık İstatistikleri. URL: https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=2ceRS4u4nW0GZkNQMerJ34zZwjB2sIjUoOWlurUemNTunPvdm9GsRe6xxwFXrP3l (Erişim tarihi: 01 Mart 2024).
  • Williams JB, Shobrak M, Wilms TM, Arif IA, Khan HA. 2012. Climate change and animals in Saudi Arabia. Saudi J Biol Sci, 19(2): 121-130.
  • Yong Z, Dong Y, Zhang X, Tan T. 2015. Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy, 78: 527-530.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Salih Sözer 0000-0003-3083-9416

Publication Date July 15, 2024
Submission Date April 2, 2024
Acceptance Date May 21, 2024
Published in Issue Year 2024

Cite

APA Sözer, S. (2024). Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma. Black Sea Journal of Engineering and Science, 7(4), 627-634. https://doi.org/10.34248/bsengineering.1463671
AMA Sözer S. Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma. BSJ Eng. Sci. July 2024;7(4):627-634. doi:10.34248/bsengineering.1463671
Chicago Sözer, Salih. “Türkiye’deki Kesimhane Atıklarından Ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma”. Black Sea Journal of Engineering and Science 7, no. 4 (July 2024): 627-34. https://doi.org/10.34248/bsengineering.1463671.
EndNote Sözer S (July 1, 2024) Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma. Black Sea Journal of Engineering and Science 7 4 627–634.
IEEE S. Sözer, “Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma”, BSJ Eng. Sci., vol. 7, no. 4, pp. 627–634, 2024, doi: 10.34248/bsengineering.1463671.
ISNAD Sözer, Salih. “Türkiye’deki Kesimhane Atıklarından Ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma”. Black Sea Journal of Engineering and Science 7/4 (July 2024), 627-634. https://doi.org/10.34248/bsengineering.1463671.
JAMA Sözer S. Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma. BSJ Eng. Sci. 2024;7:627–634.
MLA Sözer, Salih. “Türkiye’deki Kesimhane Atıklarından Ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma”. Black Sea Journal of Engineering and Science, vol. 7, no. 4, 2024, pp. 627-34, doi:10.34248/bsengineering.1463671.
Vancouver Sözer S. Türkiye’deki Kesimhane Atıklarından ve Çiftlik Hayvanları Gübrelerinden Elde Edilebilecek Biyogaz Potansiyelinin Tespiti Üzerine Bir Araştırma. BSJ Eng. Sci. 2024;7(4):627-34.

                                                24890