Research Article
BibTex RIS Cite

Synchronization of Fractional Order Chaotic Systems with Time Delay and FPGA Implementation

Year 2024, , 672 - 682, 15.07.2024
https://doi.org/10.34248/bsengineering.1486545

Abstract

It is very important to be able to express it mathematically for the control and development of electronic-based systems and the detection of many operating errors. It makes it easier to detect many problems in systems that can be expressed mathematically, as well as to be developed. In particular, studies on communication systems and the mathematical modeling and development of carrier signals and communication protocols in these systems have been increasing recently. The reliability of information signals has been increased by using chaotic-based systems, which attract attention with their complex structure, in communication systems. However, full-degree modeling of chaotic systems increases the number of erroneous bits, especially in the communication systems in which it is used, and causes long synchronization times due to time delays. For this reason, in addition to modeling chaotic systems in fractional order, it is necessary to take into account the time delays between the systems in order to synchronize the transmitter-receiver systems in the shortest possible time. In this study, it is aimed to obtain a chaotic system used in communication systems in fractional order, and then to reduce synchronization delays due to time delays with a controller. In the study, a fractional order chaotic system was designed using the Charef approximation method and the synchronization time due to time delays was reduced with a fuzzy logic-based controller. As a result, it is shown that the synchronization times of a chaotic system, where real system behavior is obtained in fractional order, can be reduced with a controller. The study was first implemented and verified experimentally using computer simulation and then using FPGA.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

123E274

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 123E274 Numaralı proje ile desteklenmiştir. Projeye verdiği destekten ötürü TÜBİTAK’a teşekkürlerimizi sunarız.

References

  • Bai EW, Lonngren KE. 1997. Synchronization of two Lorenz systems using active control. Chaos Solutions Fractals, 8: 51-58.
  • Behinfaraz R, Badamchizadeh MA, Ghiasi AR. 2015. An approach to achieve modified projective synchronization between different types of fractional-order chaotic systems with timevarying delays. Chaos Solitons Fractals, 1(78): 95- 106.
  • Behinfaraz R, Badamchizadeh MA. 2015. New approach to synchronization of two different fractional-order chaotic systems. In: 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP), 3-5 March, Mashhad, Iran, pp: 149-153.
  • Behinfaraz R, Ghaemi S, Khanmohammadi S. 2019. Risk assessment in control of fractional-order coronary artery system in the presence of external disturbance with different proposed controllers. Appl Soft Comput, 1(77): 290- 299.
  • Blakely J, Milosavljevic M, Corron N. 2018. Analytic solution for a complex network of chaotic oscillators. Entropy, 20(6): 468.
  • Çavuşoğlu Ü, Uyaroğlu Y, Pehlivan İ., 2014. Sürekli zamanlı otonom kaotik devre tasarımı ve sinyal gizleme uygulaması. J Fac Eng Archit Gazi Univ, 29:79-87.
  • Charef A, Sun HH, Tsao YY, Onaral B. 1992. Fractal system as represented by singularity function. IEEE Trans Automat Contr, 37(9): 1465-1470.
  • Chua LO, Desoer CA, Kuh ES. 1987. Linear and nonlinear circuits. McGraw-Hill College, New York, USA, pp: 839.
  • Cuomo KM, Oppenheim AV, Strogatz SH. 1993. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst II, 40(10): 626-633.
  • Divya H, Sakthivel R, Liu Y. 2021. Delay-dependent synchronization of TS fuzzy Markovian jump complex dynamical networks. Fuzzy Sets Syst, 30(416): 108- 124.
  • Er MJ, Deng C, Su SF, Wang N. 2019. Fuzzy synchronization control of complex dynamical networks under network attacks and actuator faults. Int J Fuzzy Syst, 21(7): 2043- 2053.
  • Gürses S, Akkaş N, Platin BE. 2006. Ters dönmüş bir sarkacın doğrusal olmayan konum denetiminden en büyük lyapunov üstelinin poincare kesitinden elde edilmesi. J Ist K Univ Sci Eng, 4(4): 121-137.
  • Herzallah MA. 2014. Notes on some fractional calculus operators and their properties. J Fract Calc Appl, 5(19): 1-10.
  • Huang L, Feng R, Wang M. 2004. Synchronization of chaotic systems via nonlinear control. Phys Lett A, 320:271-275.
  • Jafari AA, Mohammadi SM, Naseriyeh MH. 2019 Adaptive type-2 fuzzy backstepping control of uncertain fractional-order nonlinear systems with unknown dead-zone. Appl Math Model, 1(69): 506- 532.
  • Jin Y, Chen YQ, Xue D. 2011. Time-constant robust analysis of a fractional order [proportional derivative] controller. IET Control Theory Appl, 5(1): 164-172.
  • Kennedy MP, Kolumbán G. 2000. Digital communications using chaos. Signal Proces, 80(7): 1307-1320.
  • Koyuncu İ. 2014. Kriptolojik Uygulamalar İçin FPGA Tabanlı Yeni Kaotik Osilatörlerin ve Gerçek Rasgele Sayı Üreteçlerinin Tasarımı ve Gerçeklenmesi. Doktora Tezi, Sakarya Üniversitesi, Sakarya, Tüekiyw, ss: 145.
  • Kuo YL, Resmi IE. 2019. Model predictive control based on a Takagi- Sugeno fuzzy model for nonlinear systems. Int J Fuzzy Syst. 21(2): 556- 570.
  • Lee RS. 2019. Chaotic interval type-2 fuzzy neuro-oscillatory network (CIT2-FNON) for Worldwide 129 financial products prediction. Int J Fuzzy Syst, 21(7): 2223- 2244.
  • Li L, Liu X, Tang M, Zhang S, Zhang XM. 2021 Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings. Neurocomputing, 20(445): 180- 193.
  • Liao TL, Lin SH. 1999. Adaptive control and synchronization of Lorenz systems. J Franklin Inst, 336:925-937.
  • Lorenz EN. 1963. Deterministic nonperiodic flow. J Atmos Sci, 20(2): 130-141.
  • Ma S, Zheng J, Li Y. 2014. Chaos control and synchronization of a new fractional order chaotic system. Int J Comput Sci, 11(10): 3469-3479.
  • Ma Z, Ma H. 2019. Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems. IEEE Trans Fuzzy Syst, 28(1): 122- 133.
  • Michiels W, Niculescu SI. 2007. Stability and stabilization of time-delay systems: an eigenvalue-based approach. Society for Industrial and Applied Mathematics, Gif-sur-Yvette, France, pp: 400.
  • Mohammadzadeh A, Ghaemi S, Kaynak O, Khanmohammadi S. 2016. Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system. Appl Soft Comput, 1(49): 544- 560.
  • Mohammadzadeh A, Ghaemi S. 2018. Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay. Nonlinear Dyn, 93(4): 1809- 1821.
  • Nishimoto K. 1984. Fractional calculus. Decartess Press, Koriyama, Japan, pp: 96.
  • Oldham KB, Spanier J. 1974. The fractional calculus. Academic Press, New York, USA, pp: 142.
  • Ott E, Grebogi C, Yorke JA. 1990. Controlling chaos. Phys Rev Lett, 64(11): 1196.
  • Oustaloup A, Levron F, Mathieu B, Nanot FM. 2000. Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis, IEEE Trans Circuits Syst I Fundam Theory Appl, 47(1): 25-39.
  • Özer Ş, Zorlu H. 2012. Doğrusal olmayan par sistemler kullanılarak kaotik zaman serisi kestirimi. J Fac Eng Archit Gazi Univ, 27(2): 323-331.
  • Park JH, 2005. Chaos synchronization of a chaotic system via nonlinear control. Chaos Soliton Fractals, 25:579-584.
  • Pecora LM, Carrol TL. 1990. Synchronization in Chaotic Systems. Phys Rev Lett, 64(8): 821.
  • Peitgen HO, Jürgens H, Saupe D, Feigenbaum MJ. 2004. Chaos and Fractals: New Frontiers of Science. Springer Science & Business Media, New York, USA, pp: 560-604.
  • Petras I, Bednarova D. 2009. Fractional-Order Chaotic Systems. In: Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg, pp: 103-184.
  • Petras I. 2011. Fractional-order nonlinear systems: Modeling, analysis and simulation, Springer, New York, USA, pp: 205.
  • Podlubny I. 1999. Fractional differential equations. Math Sci Eng, 198: 41-119.
  • Qian Y, Hu W, Lin X, Wang B. 2011. Fractional order proportional integral controller for active queue management of wireless network, Proceedings of the 30th Chinese Control Conference, 22-24 July, Yantai, China, pp: 4406-4410.
  • Rajaei R, Bagheri A, Ramezani A, Cornelius SP, Gao J. 2018. Designing pinning network controllability for interdependent dynamical networks. In: 2018 Annual American Control Conference (ACC), June 27-29, Milwaukee, WI, USA, pp: 3478- 3483.
  • Riaz A, Ali M. 2008. Chaotic communications, their applications and advantages over traditional methods of commination. In Communication Systems, Networks and Digital Signal Processing, 6th International Symposium on IEEE, 22-25 April, Graz, Austria, pp: 21-24.
  • Silva-Jua´rez A, Tlelo-Cuautle E, de la Fraga LG, Li R. 2021. Optimization of the Kaplan- Yorke dimension in fractional-order chaotic oscillators by metaheuristics. Appl Math Comput, 1(394): 125831.
  • Sprott JC. 1994. Some simple chaotic flows. Phys Rev E, 50(2): R647.
  • Uçar A, Lonngren KE, Bai EW. 2003. Synchronization of chaotic behavior in nonlinear Bloch equation. Phys Lett A, 314:96-101.
  • Uçar A. 2003. On the chaotic behavior of a prototype delayed dynamical system. Chaos Soliton Fractals, 16:187-194.
  • Udita NK. 2014. A new approach to generalized fractional derivatives. B Math Anal App, 6(4): 1-15.
  • Wang F, Liu C. 2007. Synchronization of unified chaotic system based on passive control. Physica D, 225(1): 55- 60.
  • Wang L, Zhang J, Sun W. 2018. Adaptive outer synchronization and topology identification between two complex dynamical networks with time-varying delay and disturbance. IMA J Math Control Inf, 36(3): 949- 961.
  • Zhang H, Wang XY, Lin XH 2016. Topology identification and module-phase synchronization of neural network with time delay. IEEE Trans Syst Man Cybern Syst, 47(6): 885- 892.
  • Zhao Y, Li X, Rao R. 2021. Synchronization of nonidentical complex dynamical networks with unknown disturbances via observer-based sliding mode control. Neurocomputing, 24(454): 441- 447.
  • Zhong QC. 2006. Robust control of time-delay systems. Springer Science & Business Media, Liverpool, UK, pp: 216.
  • Zhu J, Gong Z, Sun Y, Dou Z. 2021. Chaotic neural network model for SMISs reliability prediction based on interdependent network SMISs reliability prediction by chaotic neural network. Qual Reliab Eng Int, 37(2): 717- 742.

Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması

Year 2024, , 672 - 682, 15.07.2024
https://doi.org/10.34248/bsengineering.1486545

Abstract

Elektronik tabanlı sistemlerin kontrolü, geliştirilmesi ve birçok işletme hatasının tespiti için matematiksel olarak ifade edilebilmesi oldukça önemlidir. Matematiksel olarak ifade edilebilen sistemlerde, geliştirilebilmesinin yanında birçok problemin tespit edilmesini de kolaylaştırır. Özellikle haberleşme sistemleri ve bu sistemlerdeki taşıyıcı sinyallerin, haberleşme protokollerinin matematiksel modellenmeleri ve geliştirilmesi ile ilgili çalışmalar son dönemde artmaktadır. Özellikle karmaşık yapısı ile dikkat çeken kaotik tabanlı sistemlerin haberleşme sistemlerinde kullanılmasıyla bilgi sinyallerinin güvenilirliği artırılmıştır. Ancak kaotik sistemlerin tam dereceli olarak modellenmesi, özellikle kullanıldığı haberleşme sistemlerindeki hatalı bit sayılarını artırmakta ve zaman gecikmelerinden kaynaklı uzun senkronizasyon sürelerine neden olmaktadır. Bu nedenle kaotik sistemlerin kesir dereceli olarak modellenmesinin yanında verici-alıcı sitemlerin mümkün olan en kısa sürelerde senkronize olmaları için sistemler arasındaki zaman gecikmelerinin de dikkate alınması gereklidir. Bu çalışmada haberleşme sistemlerinde kullanılan kaotik bir sistemin kesir dereceli olarak elde edilmesi, daha sonra ise bir kontrolör ile zaman gecikmelerinden kaynaklı senkronizasyon gecikmelerinin azaltılması amaçlanmıştır. Yapılan çalışmada Charef yaklaşım metodu kullanılarak kesir dereceli kaotik sistem tasarımı yapılmış ve bulanık mantık tabanlı bir kontrolör ile zaman gecikme sürelerinden kaynaklı senkronizasyon süresi azaltılmıştır. Neticede, kesir dereceli olarak gerçek sistem davranışı elde edilen bir kaotik sitemin bir kontrolör ile senkronizasyon sürelerinin azaltılabildiği gösterilmektedir. Yapılan çalışma önce bilgisayar benzetimi ile daha sonra ise FPGA kullanılarak deneysel uygulaması gerçekleştirilmiş ve doğrulanmıştır.

Project Number

123E274

References

  • Bai EW, Lonngren KE. 1997. Synchronization of two Lorenz systems using active control. Chaos Solutions Fractals, 8: 51-58.
  • Behinfaraz R, Badamchizadeh MA, Ghiasi AR. 2015. An approach to achieve modified projective synchronization between different types of fractional-order chaotic systems with timevarying delays. Chaos Solitons Fractals, 1(78): 95- 106.
  • Behinfaraz R, Badamchizadeh MA. 2015. New approach to synchronization of two different fractional-order chaotic systems. In: 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP), 3-5 March, Mashhad, Iran, pp: 149-153.
  • Behinfaraz R, Ghaemi S, Khanmohammadi S. 2019. Risk assessment in control of fractional-order coronary artery system in the presence of external disturbance with different proposed controllers. Appl Soft Comput, 1(77): 290- 299.
  • Blakely J, Milosavljevic M, Corron N. 2018. Analytic solution for a complex network of chaotic oscillators. Entropy, 20(6): 468.
  • Çavuşoğlu Ü, Uyaroğlu Y, Pehlivan İ., 2014. Sürekli zamanlı otonom kaotik devre tasarımı ve sinyal gizleme uygulaması. J Fac Eng Archit Gazi Univ, 29:79-87.
  • Charef A, Sun HH, Tsao YY, Onaral B. 1992. Fractal system as represented by singularity function. IEEE Trans Automat Contr, 37(9): 1465-1470.
  • Chua LO, Desoer CA, Kuh ES. 1987. Linear and nonlinear circuits. McGraw-Hill College, New York, USA, pp: 839.
  • Cuomo KM, Oppenheim AV, Strogatz SH. 1993. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst II, 40(10): 626-633.
  • Divya H, Sakthivel R, Liu Y. 2021. Delay-dependent synchronization of TS fuzzy Markovian jump complex dynamical networks. Fuzzy Sets Syst, 30(416): 108- 124.
  • Er MJ, Deng C, Su SF, Wang N. 2019. Fuzzy synchronization control of complex dynamical networks under network attacks and actuator faults. Int J Fuzzy Syst, 21(7): 2043- 2053.
  • Gürses S, Akkaş N, Platin BE. 2006. Ters dönmüş bir sarkacın doğrusal olmayan konum denetiminden en büyük lyapunov üstelinin poincare kesitinden elde edilmesi. J Ist K Univ Sci Eng, 4(4): 121-137.
  • Herzallah MA. 2014. Notes on some fractional calculus operators and their properties. J Fract Calc Appl, 5(19): 1-10.
  • Huang L, Feng R, Wang M. 2004. Synchronization of chaotic systems via nonlinear control. Phys Lett A, 320:271-275.
  • Jafari AA, Mohammadi SM, Naseriyeh MH. 2019 Adaptive type-2 fuzzy backstepping control of uncertain fractional-order nonlinear systems with unknown dead-zone. Appl Math Model, 1(69): 506- 532.
  • Jin Y, Chen YQ, Xue D. 2011. Time-constant robust analysis of a fractional order [proportional derivative] controller. IET Control Theory Appl, 5(1): 164-172.
  • Kennedy MP, Kolumbán G. 2000. Digital communications using chaos. Signal Proces, 80(7): 1307-1320.
  • Koyuncu İ. 2014. Kriptolojik Uygulamalar İçin FPGA Tabanlı Yeni Kaotik Osilatörlerin ve Gerçek Rasgele Sayı Üreteçlerinin Tasarımı ve Gerçeklenmesi. Doktora Tezi, Sakarya Üniversitesi, Sakarya, Tüekiyw, ss: 145.
  • Kuo YL, Resmi IE. 2019. Model predictive control based on a Takagi- Sugeno fuzzy model for nonlinear systems. Int J Fuzzy Syst. 21(2): 556- 570.
  • Lee RS. 2019. Chaotic interval type-2 fuzzy neuro-oscillatory network (CIT2-FNON) for Worldwide 129 financial products prediction. Int J Fuzzy Syst, 21(7): 2223- 2244.
  • Li L, Liu X, Tang M, Zhang S, Zhang XM. 2021 Asymptotical synchronization analysis of fractional-order complex neural networks with non-delayed and delayed couplings. Neurocomputing, 20(445): 180- 193.
  • Liao TL, Lin SH. 1999. Adaptive control and synchronization of Lorenz systems. J Franklin Inst, 336:925-937.
  • Lorenz EN. 1963. Deterministic nonperiodic flow. J Atmos Sci, 20(2): 130-141.
  • Ma S, Zheng J, Li Y. 2014. Chaos control and synchronization of a new fractional order chaotic system. Int J Comput Sci, 11(10): 3469-3479.
  • Ma Z, Ma H. 2019. Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems. IEEE Trans Fuzzy Syst, 28(1): 122- 133.
  • Michiels W, Niculescu SI. 2007. Stability and stabilization of time-delay systems: an eigenvalue-based approach. Society for Industrial and Applied Mathematics, Gif-sur-Yvette, France, pp: 400.
  • Mohammadzadeh A, Ghaemi S, Kaynak O, Khanmohammadi S. 2016. Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system. Appl Soft Comput, 1(49): 544- 560.
  • Mohammadzadeh A, Ghaemi S. 2018. Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay. Nonlinear Dyn, 93(4): 1809- 1821.
  • Nishimoto K. 1984. Fractional calculus. Decartess Press, Koriyama, Japan, pp: 96.
  • Oldham KB, Spanier J. 1974. The fractional calculus. Academic Press, New York, USA, pp: 142.
  • Ott E, Grebogi C, Yorke JA. 1990. Controlling chaos. Phys Rev Lett, 64(11): 1196.
  • Oustaloup A, Levron F, Mathieu B, Nanot FM. 2000. Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis, IEEE Trans Circuits Syst I Fundam Theory Appl, 47(1): 25-39.
  • Özer Ş, Zorlu H. 2012. Doğrusal olmayan par sistemler kullanılarak kaotik zaman serisi kestirimi. J Fac Eng Archit Gazi Univ, 27(2): 323-331.
  • Park JH, 2005. Chaos synchronization of a chaotic system via nonlinear control. Chaos Soliton Fractals, 25:579-584.
  • Pecora LM, Carrol TL. 1990. Synchronization in Chaotic Systems. Phys Rev Lett, 64(8): 821.
  • Peitgen HO, Jürgens H, Saupe D, Feigenbaum MJ. 2004. Chaos and Fractals: New Frontiers of Science. Springer Science & Business Media, New York, USA, pp: 560-604.
  • Petras I, Bednarova D. 2009. Fractional-Order Chaotic Systems. In: Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer, Berlin, Heidelberg, pp: 103-184.
  • Petras I. 2011. Fractional-order nonlinear systems: Modeling, analysis and simulation, Springer, New York, USA, pp: 205.
  • Podlubny I. 1999. Fractional differential equations. Math Sci Eng, 198: 41-119.
  • Qian Y, Hu W, Lin X, Wang B. 2011. Fractional order proportional integral controller for active queue management of wireless network, Proceedings of the 30th Chinese Control Conference, 22-24 July, Yantai, China, pp: 4406-4410.
  • Rajaei R, Bagheri A, Ramezani A, Cornelius SP, Gao J. 2018. Designing pinning network controllability for interdependent dynamical networks. In: 2018 Annual American Control Conference (ACC), June 27-29, Milwaukee, WI, USA, pp: 3478- 3483.
  • Riaz A, Ali M. 2008. Chaotic communications, their applications and advantages over traditional methods of commination. In Communication Systems, Networks and Digital Signal Processing, 6th International Symposium on IEEE, 22-25 April, Graz, Austria, pp: 21-24.
  • Silva-Jua´rez A, Tlelo-Cuautle E, de la Fraga LG, Li R. 2021. Optimization of the Kaplan- Yorke dimension in fractional-order chaotic oscillators by metaheuristics. Appl Math Comput, 1(394): 125831.
  • Sprott JC. 1994. Some simple chaotic flows. Phys Rev E, 50(2): R647.
  • Uçar A, Lonngren KE, Bai EW. 2003. Synchronization of chaotic behavior in nonlinear Bloch equation. Phys Lett A, 314:96-101.
  • Uçar A. 2003. On the chaotic behavior of a prototype delayed dynamical system. Chaos Soliton Fractals, 16:187-194.
  • Udita NK. 2014. A new approach to generalized fractional derivatives. B Math Anal App, 6(4): 1-15.
  • Wang F, Liu C. 2007. Synchronization of unified chaotic system based on passive control. Physica D, 225(1): 55- 60.
  • Wang L, Zhang J, Sun W. 2018. Adaptive outer synchronization and topology identification between two complex dynamical networks with time-varying delay and disturbance. IMA J Math Control Inf, 36(3): 949- 961.
  • Zhang H, Wang XY, Lin XH 2016. Topology identification and module-phase synchronization of neural network with time delay. IEEE Trans Syst Man Cybern Syst, 47(6): 885- 892.
  • Zhao Y, Li X, Rao R. 2021. Synchronization of nonidentical complex dynamical networks with unknown disturbances via observer-based sliding mode control. Neurocomputing, 24(454): 441- 447.
  • Zhong QC. 2006. Robust control of time-delay systems. Springer Science & Business Media, Liverpool, UK, pp: 216.
  • Zhu J, Gong Z, Sun Y, Dou Z. 2021. Chaotic neural network model for SMISs reliability prediction based on interdependent network SMISs reliability prediction by chaotic neural network. Qual Reliab Eng Int, 37(2): 717- 742.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Electrical Circuits and Systems
Journal Section Research Articles
Authors

Semih Can Değirmen 0009-0009-8077-6960

Kenan Altun 0000-0001-7419-1901

Project Number 123E274
Publication Date July 15, 2024
Submission Date May 19, 2024
Acceptance Date July 1, 2024
Published in Issue Year 2024

Cite

APA Değirmen, S. C., & Altun, K. (2024). Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması. Black Sea Journal of Engineering and Science, 7(4), 672-682. https://doi.org/10.34248/bsengineering.1486545
AMA Değirmen SC, Altun K. Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması. BSJ Eng. Sci. July 2024;7(4):672-682. doi:10.34248/bsengineering.1486545
Chicago Değirmen, Semih Can, and Kenan Altun. “Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu Ve FPGA Uygulaması”. Black Sea Journal of Engineering and Science 7, no. 4 (July 2024): 672-82. https://doi.org/10.34248/bsengineering.1486545.
EndNote Değirmen SC, Altun K (July 1, 2024) Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması. Black Sea Journal of Engineering and Science 7 4 672–682.
IEEE S. C. Değirmen and K. Altun, “Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması”, BSJ Eng. Sci., vol. 7, no. 4, pp. 672–682, 2024, doi: 10.34248/bsengineering.1486545.
ISNAD Değirmen, Semih Can - Altun, Kenan. “Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu Ve FPGA Uygulaması”. Black Sea Journal of Engineering and Science 7/4 (July 2024), 672-682. https://doi.org/10.34248/bsengineering.1486545.
JAMA Değirmen SC, Altun K. Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması. BSJ Eng. Sci. 2024;7:672–682.
MLA Değirmen, Semih Can and Kenan Altun. “Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu Ve FPGA Uygulaması”. Black Sea Journal of Engineering and Science, vol. 7, no. 4, 2024, pp. 672-8, doi:10.34248/bsengineering.1486545.
Vancouver Değirmen SC, Altun K. Zaman Gecikmeli Kesir Dereceli Kaotik Sistemlerin Senkronizasyonu ve FPGA Uygulaması. BSJ Eng. Sci. 2024;7(4):672-8.

                                                24890