Research Article
BibTex RIS Cite

Prediction of Natural Gas Price with Hybrid Model Based on Elman Neural Networks and Dragonfly Optimization Algorithm

Year 2025, , 102 - 114, 15.01.2025
https://doi.org/10.34248/bsengineering.1502427

Abstract

With the increasing in the world population, the use of various fossil and renewable energy resources is increasing. Compared to coal and oil, which are among the fossil energy sources, natural gas has found use at individual and institutional levels due to its features such as lower carbon dioxide emissions, high efficiency, easy access and low storage costs. The price of natural gas is not only economically important but also strategically important. In particular, the prediction of the future value of natural gas prices provides guidance for energy producers, consumers, investors and governments when making strategic decisions. In this study, the one step ahead natural gas close price is predicted by using Elman Neural Networks (ENN) and Dragonfly Optimization Algorithm (DOA) approaches. The analysis utilized a dataset spanning from June 01, 2009, to May 31, 2024, encompassing 3986 close prices. ENN, one of the artificial intelligence approaches, is used to predict the next closing price. ENN, which is among the feedback neural networks, has the ability to predict future values by taking into account past data and is especially used in time series forecasting. During the model training phase, the weight and bias values of the ENN are found with the DOA method, which is a heuristic optimization algorithm developed inspired by the hunting and migration behavior of dragon flies. In the evaluations of the model, the generalization capacity of the model is measured more reliably by dividing the data set into training, validation and test sets. Model performance is evaluated using various statistical error criteria and the results are found to be satisfactory. The use of artificial intelligence approaches is critical to increase forecast accuracy in dynamic and complex systems such as energy markets. The combination of ENN and DOA provides a powerful and flexible solution for such problems. This study demonstrates the effectiveness of artificial intelligence methods in predicting natural gas prices and reveals the usability of these approaches in practical applications.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Supporting Institution

None

Project Number

Bulunmamaktadır

Thanks

None

References

  • Afgan NH, Pilavachi PA, Carvalho MG. 2007. Multi-criteria evaluation of natural gas resources. Energy Policy, 35(1): 704-713.
  • Anonymous. 2024. Natural Gas Price. URL: https://www.investing.com/commodities/natural-gas (accessed date: 31 May 2024).
  • Duan Y, Zhang J, Wang X. 2023. Henry Hub monthly natural gas price forecasting using CEEMDAN–Bagging–HHO–SVR. Front Energy Res, 11: 1323073.
  • Elman JL. 1990. Finding structure in time. Cogn Sci, 14(2): 179-211.
  • Farrokhifar M, Nie Y, Pozo D. 2020. Energy systems planning: A survey on models for integrated power and natural gas networks coordination. Appl Energy, 262: 114567.
  • Gillessen B, Heinrichs H, Hake JF, Allelein HJ. 2019. Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition. Appl Energy, 251: 113377.
  • Goodell JW, Gurdgiev C, Paltrinieri A, Piserà S. 2023. Global energy supply risk: Evidence from the reactions of European natural gas futures to Nord Stream announcements. Energy Econ, 125: 106838.
  • Gürsan C, de Gooyert V. 2021. The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?. Renew Sustain Energy Rev, 138: 110552.
  • Holland JH. 1992. Genetic algorithms. Sci Am, 267(1): 66-73.
  • Khan MI. 2018. Evaluating the strategies of compressed natural gas industry using an integrated SWOT and MCDM approach. J Clean Prod, 172: 1035-1052.
  • Khan MI, Yasmin T, Shakoor A. 2015. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew Sustain Energy Rev, 51: 785-797.
  • Kong F, Liu Y, Tong L, Guo W, Jin Y, Wang L, Ding Y. 2023. A novel optimization for liquefied natural gas power plants based on the renewable energy. Appl Therm Eng, 233: 121172.
  • Li J, Wu Q, Tian Y, Fan L. 2021. Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network. Energy. 227: 120478.
  • Liu W, Sun J, Liu G, Fu S, Liu M, Zhu Y, Gao Q. 2023. Improved GWO and its application in parameter optimization of Elman neural network. PLoS One, 18(7): e0288071.
  • Mirjalili S. 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl, 27: 1053-1073.
  • Mittakola RT, Ciais P, Zhou C. 2024. Short-to-medium range forecast of natural gas use in the United States residential buildings. J Clean Prod, 437: 140687.
  • Reynolds CW. 1987. Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, August 01, Volume 21 ACM, ABD, pp: 25-34.
  • Rizvi SKA, Naqvi B, Boubaker S, Mirza N. 2022. The power play of natural gas and crude oil in the move towards the financialization of the energy market. Energy Econ, 112: 106131.
  • Saghi F, Rezaee MJ. 2021. An ensemble approach based on transformation functions for natural gas price forecasting considering optimal time delays. PeerJ Comput Sci, 7: e409.
  • Su M, Zhang Z, Zhu Y, Zha D, Wen W. 2019. Data driven natural gas spot price prediction models using machine learning methods. Energies, 12(9): 1680.
  • Szklo AS, Soares JB, Tolmasquim MT. 2004. Economic potential of natural gas-fired cogeneration—analysis of Brazil's chemical industry. Energy Policy, 32(12): 1415-1428.
  • Villicaña-García E, Ponce-Ortega JM. 2019. Sustainable strategic planning for a national natural gas energy system accounting for unconventional sources. Energy Convers Manag, 181: 382-397.
  • Zhan L, Tang Z. 2022. Natural gas price forecasting by a new hybrid model combining quadratic decomposition technology and LSTM model. Math Probl Eng, 2022(1): 5488053.
  • Zhou L, Fan Q, Huang X, Liu Y. 2023. Weak and strong convergence analysis of Elman neural networks via weight decay regularization. Optim, 72(9): 2287-2309.

Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini

Year 2025, , 102 - 114, 15.01.2025
https://doi.org/10.34248/bsengineering.1502427

Abstract

Dünya nüfusunun artışı ile çeşitli fosil ve yenilenebilir enerji kaynaklarının kullanımı giderek artmaktadır. Doğal gaz, fosil enerji kaynakları arasında yer alan kömür ve petrolle karşılaştırıldığında, daha düşük karbondioksit emisyonu, yüksek verimlilik, kolay erişim ve düşük depolama maliyeti gibi özellikleri nedeniyle bireysel ve kurumsal düzeyde kullanım alanı bulmuştur. Doğal gaz fiyatı ekonomik açıdan önemli olduğu kadar stratejik öneme de sahiptir. Özellikle doğal gaz fiyatının gelecekte alacağı değerin tahmini, enerji üreticilerine ve tüketicilerine, yatırımcılara ve hükümetlere stratejik kararlar alırken yol gösterici olmaktadır. Bu çalışmada, Elman Sinir Ağları (ENN) ve Yusufçuk Optimizasyon Algoritması (DOA) yaklaşımları kullanılarak bir adım sonraki doğal gaz kapanış fiyatının tahmini yapılmıştır. Çalışma 01,06,2009-31,05,2024 tarihleri arasında 3986 adet kapanış fiyatı içeren veri seti kullanılarak yapılmıştır. Bir adım sonraki kapanış fiyatının tahmini için yapay zekâ yaklaşımlarından ENN yöntemi kullanılmıştır. Geri beslemeli sinir ağları arasında yer alan ENN, geçmiş verileri dikkate alarak gelecekteki değerleri tahmin etme yeteneğine sahiptir ve özellikle zaman serisi tahmininde kullanılmaktadır. Model eğitim aşamasında yusufçukların avlanma ve göç etme davranışlarından ilham alınarak geliştirilmiş bir sezgisel optimizasyon algoritması olan DOA yöntemiyle ENN’nin ağırlık ve bias değerleri bulunmuştur. Modelin değerlendirilme aşamasında veri setinin eğitim, doğrulama ve test setlerine bölünmesiyle modelin genelleme kapasitesi daha güvenilir bir şekilde ölçülmektedir. Model başarımı, çeşitli istatistiksel hata kriterleri kullanılarak değerlendirilmiş ve elde edilen sonuçlar tatminkâr bulunmuştur. Yapay zekâ yaklaşımlarının kullanımı, enerji piyasaları gibi dinamik ve karmaşık sistemlerde tahmin doğruluğunu artırmak için kritik önem taşımaktadır. ENN ve DOA’nın birleşimi, bu tür problemler için güçlü ve esnek bir çözüm sunmaktadır. Bu çalışma, doğal gaz fiyatlarının tahmininde yapay zekâ yöntemlerinin etkinliğini göstermekte ve bu yaklaşımların pratik uygulamalarda kullanılabilirliğini ortaya koymaktadır.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Supporting Institution

Bulunmamaktadır

Project Number

Bulunmamaktadır

Thanks

Bulunmamaktadır

References

  • Afgan NH, Pilavachi PA, Carvalho MG. 2007. Multi-criteria evaluation of natural gas resources. Energy Policy, 35(1): 704-713.
  • Anonymous. 2024. Natural Gas Price. URL: https://www.investing.com/commodities/natural-gas (accessed date: 31 May 2024).
  • Duan Y, Zhang J, Wang X. 2023. Henry Hub monthly natural gas price forecasting using CEEMDAN–Bagging–HHO–SVR. Front Energy Res, 11: 1323073.
  • Elman JL. 1990. Finding structure in time. Cogn Sci, 14(2): 179-211.
  • Farrokhifar M, Nie Y, Pozo D. 2020. Energy systems planning: A survey on models for integrated power and natural gas networks coordination. Appl Energy, 262: 114567.
  • Gillessen B, Heinrichs H, Hake JF, Allelein HJ. 2019. Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition. Appl Energy, 251: 113377.
  • Goodell JW, Gurdgiev C, Paltrinieri A, Piserà S. 2023. Global energy supply risk: Evidence from the reactions of European natural gas futures to Nord Stream announcements. Energy Econ, 125: 106838.
  • Gürsan C, de Gooyert V. 2021. The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?. Renew Sustain Energy Rev, 138: 110552.
  • Holland JH. 1992. Genetic algorithms. Sci Am, 267(1): 66-73.
  • Khan MI. 2018. Evaluating the strategies of compressed natural gas industry using an integrated SWOT and MCDM approach. J Clean Prod, 172: 1035-1052.
  • Khan MI, Yasmin T, Shakoor A. 2015. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew Sustain Energy Rev, 51: 785-797.
  • Kong F, Liu Y, Tong L, Guo W, Jin Y, Wang L, Ding Y. 2023. A novel optimization for liquefied natural gas power plants based on the renewable energy. Appl Therm Eng, 233: 121172.
  • Li J, Wu Q, Tian Y, Fan L. 2021. Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network. Energy. 227: 120478.
  • Liu W, Sun J, Liu G, Fu S, Liu M, Zhu Y, Gao Q. 2023. Improved GWO and its application in parameter optimization of Elman neural network. PLoS One, 18(7): e0288071.
  • Mirjalili S. 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl, 27: 1053-1073.
  • Mittakola RT, Ciais P, Zhou C. 2024. Short-to-medium range forecast of natural gas use in the United States residential buildings. J Clean Prod, 437: 140687.
  • Reynolds CW. 1987. Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, August 01, Volume 21 ACM, ABD, pp: 25-34.
  • Rizvi SKA, Naqvi B, Boubaker S, Mirza N. 2022. The power play of natural gas and crude oil in the move towards the financialization of the energy market. Energy Econ, 112: 106131.
  • Saghi F, Rezaee MJ. 2021. An ensemble approach based on transformation functions for natural gas price forecasting considering optimal time delays. PeerJ Comput Sci, 7: e409.
  • Su M, Zhang Z, Zhu Y, Zha D, Wen W. 2019. Data driven natural gas spot price prediction models using machine learning methods. Energies, 12(9): 1680.
  • Szklo AS, Soares JB, Tolmasquim MT. 2004. Economic potential of natural gas-fired cogeneration—analysis of Brazil's chemical industry. Energy Policy, 32(12): 1415-1428.
  • Villicaña-García E, Ponce-Ortega JM. 2019. Sustainable strategic planning for a national natural gas energy system accounting for unconventional sources. Energy Convers Manag, 181: 382-397.
  • Zhan L, Tang Z. 2022. Natural gas price forecasting by a new hybrid model combining quadratic decomposition technology and LSTM model. Math Probl Eng, 2022(1): 5488053.
  • Zhou L, Fan Q, Huang X, Liu Y. 2023. Weak and strong convergence analysis of Elman neural networks via weight decay regularization. Optim, 72(9): 2287-2309.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Seçkin Karasu 0000-0001-5277-5252

Project Number Bulunmamaktadır
Publication Date January 15, 2025
Submission Date June 18, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2025

Cite

APA Karasu, S. (2025). Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini. Black Sea Journal of Engineering and Science, 8(1), 102-114. https://doi.org/10.34248/bsengineering.1502427
AMA Karasu S. Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini. BSJ Eng. Sci. January 2025;8(1):102-114. doi:10.34248/bsengineering.1502427
Chicago Karasu, Seçkin. “Doğal Gaz Fiyatının Elman Sinir Ağları Ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model Ile Tahmini”. Black Sea Journal of Engineering and Science 8, no. 1 (January 2025): 102-14. https://doi.org/10.34248/bsengineering.1502427.
EndNote Karasu S (January 1, 2025) Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini. Black Sea Journal of Engineering and Science 8 1 102–114.
IEEE S. Karasu, “Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini”, BSJ Eng. Sci., vol. 8, no. 1, pp. 102–114, 2025, doi: 10.34248/bsengineering.1502427.
ISNAD Karasu, Seçkin. “Doğal Gaz Fiyatının Elman Sinir Ağları Ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model Ile Tahmini”. Black Sea Journal of Engineering and Science 8/1 (January 2025), 102-114. https://doi.org/10.34248/bsengineering.1502427.
JAMA Karasu S. Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini. BSJ Eng. Sci. 2025;8:102–114.
MLA Karasu, Seçkin. “Doğal Gaz Fiyatının Elman Sinir Ağları Ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model Ile Tahmini”. Black Sea Journal of Engineering and Science, vol. 8, no. 1, 2025, pp. 102-14, doi:10.34248/bsengineering.1502427.
Vancouver Karasu S. Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini. BSJ Eng. Sci. 2025;8(1):102-14.

                                                24890