Research Article
BibTex RIS Cite

Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride

Year 2024, , 1022 - 1030, 15.09.2024
https://doi.org/10.34248/bsengineering.1508116

Abstract

This study investigates the effectiveness of transparent aluminum oxynitride (AlON) in neutron shielding, focusing on both fast and thermal neutrons. Using conventional radiation attenuation parameters, the macroscopic neutron removal cross-sections of AlON were calculated for varying neutron energies and material thicknesses. The Geant4 simulation toolkit was employed to model and analyze the neutron interactions with AlON. The results indicate that AlON exhibits a high neutron shielding capacity for fast neutrons (2 MeV), with transmission factor values ranging from 0.783 to 0.260 for material thicknesses between 1 and 10 cm. These values are nearly identical to those for water, which range from 0.782 to 0.257, highlighting AlON's comparable performance. However, for thermal neutrons, AlON's performance was less effective, only surpassing lead but not concrete or water. The findings suggest that while AlON is highly effective for fast neutron shielding, it may require complementary materials to adequately shield thermal neutrons. This could involve using AlON in combination with other materials to create a more comprehensive neutron shielding solution. AlON shows significant potential as a neutron shielding material, particularly for fast neutrons. Its integration with additional shielding materials could enhance its overall effectiveness, making it suitable for various nuclear and radiation protection applications.

References

  • Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P. 2003. Geant4 - a simulation toolkit. Nucl Instrum Methods Phys Res A, 506(3): 250-303.
  • Akyıldırım H. 2019. Calculation of fast neutron shielding parameters for some essential carbohydrates. Erzincan Üniv Fen Bilim Enst Derg, 12(2): 1141-1148.
  • Al-Buriahi M, Bakhsh EM, Tonguc B, Khan SB. 2020. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram Int, 46(11): 19078-19083.
  • Ali MS, Hassan GS, Shoraiet GM, Abdelmonem AM. 2024. Optimizing gamma-ray shielding for boron neutron capture therapy by using unglazed ceramic composites. Nucl Instrum Methods Phys Res B, 554: 165450.
  • Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M. 2006. Geant4 developments and applications. IEEE Trans Nucl Sci, 53(1): 270-278.
  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T. 2016. Recent developments in geant4. Nucl Instrum Methods Phys Res A, 835: 186-225.
  • AlMisned G, Sen Baykal D, Elshami W, Susoy G, Kilic G, Tekin HO. 2024a. A comparative analysis of shielding effectiveness in glass and concrete containers. Open Phys, 22(1): 20240019.
  • AlMisned G, Susoy G, Tekin H. 2024b. Neutron transmission analysis in borated polyethylene, boron carbide, and polyethylene: Insights from MCNP6 simulations. Radiat Phys Chem, 218: 111585.
  • AlMisned G, Tekin HO, Kavaz E, Bilal G, Issa SA, Zakaly HM, Ene A. 2021. Gamma, fast neutron, proton, and alpha shielding properties of borate glasses: a closer look on lead (ii) oxide and bismuth (iii) oxide reinforcement. Appl Sci, 11(15): 6837.
  • Alomayrah N, Alrowaili Z, Alalawi A, Al-Buriahi M. 2024. Gamma and neutron attenuation of asm geopolymers for radiation shielding applications: Theoretical study. J Radiat Res Appl Sci, 17(2): 100876.
  • Alrowaili ZA, Alsaiari NS, İbrahimoğlu E, Çalışkan F, Olarinoye IO, Al-Buriahi MS. 2024. Physical, chemical and radiation shielding properties of metakaolin-based geopolymers containing borosilicate waste glass. Radiat Phys Chem, 224: 112075.
  • Alzahrani FMA, Basha B, Hammoud A, Tamam N, Alsufyani SJ, Kebaili I. 2024a. Gamma attenuation and nuclear shielding ability of 〖TeO〗_2/〖Bi〗_2 O_3/〖WO〗_3 glass system. Radiat Phys Chem, 223: 111985.
  • Alzahrani JS, Alrowaili ZA, Alalawi A, Alshahrani B, Al-Buriahi MS. 2024b. Gamma and neutron attenuation of 〖Bi〗_2 O_3/CaO modified borovanadate glasses for radiation shielding applications. J Radiat Res Appl Sc, 17: 100887.
  • Alzahrani JS, Alrowaili ZA, Sriwunkum C, Al-Buriahi MS. 2024c. Radiation and nuclear shielding performance of tellurite glass system containing 〖Li〗_2 O and MoO_3: XCOM and FLUKA Monte Carlo. J Radiat Res Appl Sc, 17: 100923.
  • Cherkashina N, Pavlenko V, Shkaplerov A, Kuritsyn A, Sidelnikov R, Popova E, Umnova LA, Domarev S. 2024. Neutron attenuation in some polymer composite material. Adv Space Res, 73(5): 2638-2651.
  • El-Khayatt A. 2010. Calculation of fast neutron removal cross-sections for some compounds and materials. Ann Nucl Energy, 37(2): 218-222.
  • Fahmi AHM, Sazali MA, Yazid K, Bakar AAA, Ali NSM, Jamaluddin K, Sarkawi MS. 2024. Analysis of graphite-paraffin composite in neutron radiography, impact resistance, and thermal neutron attenuation. Radiat Phys Chem, 218: 111639.
  • Gaylan Y, Bozkurt A, Avar B. 2021. Investigating thermal and fast neutron shielding properties of b4c, b2o3, sm2o3, and gd2o3 doped polymer matrix composites using Monte Carlo simulations. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(2): 490-499.
  • Johnson R, Biswas P, Ramavath P, Kumar R, Padmanabham G. 2012. Transparent polycrystalline ceramics: an overview. T Indian Ceram Soc, 71(2): 73-85.
  • Kaçal M, Akman F, Sayyed M. 2019. Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl Eng Technol, 51(3): 818-824.
  • Katubi KM, İbrahimoğlu E, Çalışkan F, Alrowaili ZA, Olarinoye IO, Al-Buriahi MS. 2024. Apatite–Wollastonite (AW) glass ceramic doped with B_2 O_3: Synthesis, structure, SEM, hardness, XRD, and neutron/charged particle attenuation properties. Ceram Int, 50: 27139-27146.
  • Kim J, Lee BC, Uhm YR, Miller WH. 2014. Enhancement of thermal neutron attenuation of nano-b4c,-bn dispersed neutron shielding polymer nanocomposites. J Nucl Mater, 453(1-3): 48-53.
  • Lakshminarayana G, Tekin HO, Dong M, Al-Buriahi M, Lee DE, Yoon J, Park T. 2022. Comparative assessment of fast and thermal neutrons and gamma radiation protection qualities combined with mechanical factors of different borate-based glass systems. Results Phys, 37: 105527.
  • Li X, Cui D, Zou C, Ren C, Chen J. 2024. Neutron shielding analysis for a gadolinium doped nickel alloy. Mater Today Commun, 38: 107933.
  • Ouardi A. 2021. Neutron shielding calculations for neutron imaging facility at the maamora triga reactor. Appl Radiat Isotopes, 176: 109852.
  • Özdoğan H, Üncü YA, Akman F, Polat H, Kaçal MR. 2024. Detailed analysis of gamma-shielding characteristics of ternary composites using experimental, theoretical and Monte Carlo simulation method. Polymers, 16:1778.
  • Pavlenko V, Edamenko O, Cherkashina N, Kuprieva O, Noskov A. 2015. Study of the attenuation coefficients of photon and neutron beams passing through titanium hydride. J Surf Investig, 9: 546-549.
  • Pianpanit T, Saenboonruang K. 2024. Understanding neutron-shielding properties of self-healing poly (vinyl alcohol) hydrogels containing rare-earth oxides through simulations. Results Phys, 57: 107436.
  • Ramisetty M, Sastri S, Kashalikar U, Goldman LM, Nag N. 2013. Transparent polycrystalline cubic spinels protect and defend. Am Ceramics Soc Bull, 92(2): 20-25.
  • Reda AM, Ahmed R, Alsawah MA, El-Sabbagh SH, Elabd AA, Kansouh W. 2024. Radiation shielding effectiveness, structural, and mechanical properties of hdpe/b4c composites reinforced with fe2o3-al2o3-al-fe fillers. Phys Scr, 99: 035308.
  • Salifu S, Olubambi PA. 2023. Transparent aluminium ceramics: fabrication techniques, setbacks and prospects. J Korean Ceram Soc, 60(1): 24-40.
  • Singh VP, Badiger N. 2014. Gamma ray and neutron shielding properties of some alloy materials. Ann Nucl Energy, 64: 301-310.
  • Singh VP, Badiger N, Chanthima N, Kaewkhao J. 2014. Evaluation of gamma ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat Phys Chem, 98: 14-21.
  • Tellili B, Elmahroug Y, Souga C. 2014. Calculation of fast neutron removal cross sections for different lunar soils. Adv Space Res, 53(2): 348-352.
  • Yıldırım A. 2024. Radiation attenuation properties of transparent aluminum oxynitride: a comprehensive study. Eur Phys J Plus, 139(5): 383.
  • Zayed AM, El-Khayatt AM, Mahmoud KA, Petrounias P, Masoud MA. 2024. Evaluation of some heavyweight minerals as sustainable neutron and gamma-ray attenuating materials: comprehensive theoretical and simulation investigations. Arab J Sci Eng, Early Access, https://doi.org/10.1007/s13369-024-09300-2.

Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride

Year 2024, , 1022 - 1030, 15.09.2024
https://doi.org/10.34248/bsengineering.1508116

Abstract

This study investigates the effectiveness of transparent aluminum oxynitride (AlON) in neutron shielding, focusing on both fast and thermal neutrons. Using conventional radiation attenuation parameters, the macroscopic neutron removal cross-sections of AlON were calculated for varying neutron energies and material thicknesses. The Geant4 simulation toolkit was employed to model and analyze the neutron interactions with AlON. The results indicate that AlON exhibits a high neutron shielding capacity for fast neutrons (2 MeV), with transmission factor values ranging from 0.783 to 0.260 for material thicknesses between 1 and 10 cm. These values are nearly identical to those for water, which range from 0.782 to 0.257, highlighting AlON's comparable performance. However, for thermal neutrons, AlON's performance was less effective, only surpassing lead but not concrete or water. The findings suggest that while AlON is highly effective for fast neutron shielding, it may require complementary materials to adequately shield thermal neutrons. This could involve using AlON in combination with other materials to create a more comprehensive neutron shielding solution. AlON shows significant potential as a neutron shielding material, particularly for fast neutrons. Its integration with additional shielding materials could enhance its overall effectiveness, making it suitable for various nuclear and radiation protection applications.

References

  • Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P. 2003. Geant4 - a simulation toolkit. Nucl Instrum Methods Phys Res A, 506(3): 250-303.
  • Akyıldırım H. 2019. Calculation of fast neutron shielding parameters for some essential carbohydrates. Erzincan Üniv Fen Bilim Enst Derg, 12(2): 1141-1148.
  • Al-Buriahi M, Bakhsh EM, Tonguc B, Khan SB. 2020. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram Int, 46(11): 19078-19083.
  • Ali MS, Hassan GS, Shoraiet GM, Abdelmonem AM. 2024. Optimizing gamma-ray shielding for boron neutron capture therapy by using unglazed ceramic composites. Nucl Instrum Methods Phys Res B, 554: 165450.
  • Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M. 2006. Geant4 developments and applications. IEEE Trans Nucl Sci, 53(1): 270-278.
  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T. 2016. Recent developments in geant4. Nucl Instrum Methods Phys Res A, 835: 186-225.
  • AlMisned G, Sen Baykal D, Elshami W, Susoy G, Kilic G, Tekin HO. 2024a. A comparative analysis of shielding effectiveness in glass and concrete containers. Open Phys, 22(1): 20240019.
  • AlMisned G, Susoy G, Tekin H. 2024b. Neutron transmission analysis in borated polyethylene, boron carbide, and polyethylene: Insights from MCNP6 simulations. Radiat Phys Chem, 218: 111585.
  • AlMisned G, Tekin HO, Kavaz E, Bilal G, Issa SA, Zakaly HM, Ene A. 2021. Gamma, fast neutron, proton, and alpha shielding properties of borate glasses: a closer look on lead (ii) oxide and bismuth (iii) oxide reinforcement. Appl Sci, 11(15): 6837.
  • Alomayrah N, Alrowaili Z, Alalawi A, Al-Buriahi M. 2024. Gamma and neutron attenuation of asm geopolymers for radiation shielding applications: Theoretical study. J Radiat Res Appl Sci, 17(2): 100876.
  • Alrowaili ZA, Alsaiari NS, İbrahimoğlu E, Çalışkan F, Olarinoye IO, Al-Buriahi MS. 2024. Physical, chemical and radiation shielding properties of metakaolin-based geopolymers containing borosilicate waste glass. Radiat Phys Chem, 224: 112075.
  • Alzahrani FMA, Basha B, Hammoud A, Tamam N, Alsufyani SJ, Kebaili I. 2024a. Gamma attenuation and nuclear shielding ability of 〖TeO〗_2/〖Bi〗_2 O_3/〖WO〗_3 glass system. Radiat Phys Chem, 223: 111985.
  • Alzahrani JS, Alrowaili ZA, Alalawi A, Alshahrani B, Al-Buriahi MS. 2024b. Gamma and neutron attenuation of 〖Bi〗_2 O_3/CaO modified borovanadate glasses for radiation shielding applications. J Radiat Res Appl Sc, 17: 100887.
  • Alzahrani JS, Alrowaili ZA, Sriwunkum C, Al-Buriahi MS. 2024c. Radiation and nuclear shielding performance of tellurite glass system containing 〖Li〗_2 O and MoO_3: XCOM and FLUKA Monte Carlo. J Radiat Res Appl Sc, 17: 100923.
  • Cherkashina N, Pavlenko V, Shkaplerov A, Kuritsyn A, Sidelnikov R, Popova E, Umnova LA, Domarev S. 2024. Neutron attenuation in some polymer composite material. Adv Space Res, 73(5): 2638-2651.
  • El-Khayatt A. 2010. Calculation of fast neutron removal cross-sections for some compounds and materials. Ann Nucl Energy, 37(2): 218-222.
  • Fahmi AHM, Sazali MA, Yazid K, Bakar AAA, Ali NSM, Jamaluddin K, Sarkawi MS. 2024. Analysis of graphite-paraffin composite in neutron radiography, impact resistance, and thermal neutron attenuation. Radiat Phys Chem, 218: 111639.
  • Gaylan Y, Bozkurt A, Avar B. 2021. Investigating thermal and fast neutron shielding properties of b4c, b2o3, sm2o3, and gd2o3 doped polymer matrix composites using Monte Carlo simulations. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(2): 490-499.
  • Johnson R, Biswas P, Ramavath P, Kumar R, Padmanabham G. 2012. Transparent polycrystalline ceramics: an overview. T Indian Ceram Soc, 71(2): 73-85.
  • Kaçal M, Akman F, Sayyed M. 2019. Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl Eng Technol, 51(3): 818-824.
  • Katubi KM, İbrahimoğlu E, Çalışkan F, Alrowaili ZA, Olarinoye IO, Al-Buriahi MS. 2024. Apatite–Wollastonite (AW) glass ceramic doped with B_2 O_3: Synthesis, structure, SEM, hardness, XRD, and neutron/charged particle attenuation properties. Ceram Int, 50: 27139-27146.
  • Kim J, Lee BC, Uhm YR, Miller WH. 2014. Enhancement of thermal neutron attenuation of nano-b4c,-bn dispersed neutron shielding polymer nanocomposites. J Nucl Mater, 453(1-3): 48-53.
  • Lakshminarayana G, Tekin HO, Dong M, Al-Buriahi M, Lee DE, Yoon J, Park T. 2022. Comparative assessment of fast and thermal neutrons and gamma radiation protection qualities combined with mechanical factors of different borate-based glass systems. Results Phys, 37: 105527.
  • Li X, Cui D, Zou C, Ren C, Chen J. 2024. Neutron shielding analysis for a gadolinium doped nickel alloy. Mater Today Commun, 38: 107933.
  • Ouardi A. 2021. Neutron shielding calculations for neutron imaging facility at the maamora triga reactor. Appl Radiat Isotopes, 176: 109852.
  • Özdoğan H, Üncü YA, Akman F, Polat H, Kaçal MR. 2024. Detailed analysis of gamma-shielding characteristics of ternary composites using experimental, theoretical and Monte Carlo simulation method. Polymers, 16:1778.
  • Pavlenko V, Edamenko O, Cherkashina N, Kuprieva O, Noskov A. 2015. Study of the attenuation coefficients of photon and neutron beams passing through titanium hydride. J Surf Investig, 9: 546-549.
  • Pianpanit T, Saenboonruang K. 2024. Understanding neutron-shielding properties of self-healing poly (vinyl alcohol) hydrogels containing rare-earth oxides through simulations. Results Phys, 57: 107436.
  • Ramisetty M, Sastri S, Kashalikar U, Goldman LM, Nag N. 2013. Transparent polycrystalline cubic spinels protect and defend. Am Ceramics Soc Bull, 92(2): 20-25.
  • Reda AM, Ahmed R, Alsawah MA, El-Sabbagh SH, Elabd AA, Kansouh W. 2024. Radiation shielding effectiveness, structural, and mechanical properties of hdpe/b4c composites reinforced with fe2o3-al2o3-al-fe fillers. Phys Scr, 99: 035308.
  • Salifu S, Olubambi PA. 2023. Transparent aluminium ceramics: fabrication techniques, setbacks and prospects. J Korean Ceram Soc, 60(1): 24-40.
  • Singh VP, Badiger N. 2014. Gamma ray and neutron shielding properties of some alloy materials. Ann Nucl Energy, 64: 301-310.
  • Singh VP, Badiger N, Chanthima N, Kaewkhao J. 2014. Evaluation of gamma ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat Phys Chem, 98: 14-21.
  • Tellili B, Elmahroug Y, Souga C. 2014. Calculation of fast neutron removal cross sections for different lunar soils. Adv Space Res, 53(2): 348-352.
  • Yıldırım A. 2024. Radiation attenuation properties of transparent aluminum oxynitride: a comprehensive study. Eur Phys J Plus, 139(5): 383.
  • Zayed AM, El-Khayatt AM, Mahmoud KA, Petrounias P, Masoud MA. 2024. Evaluation of some heavyweight minerals as sustainable neutron and gamma-ray attenuating materials: comprehensive theoretical and simulation investigations. Arab J Sci Eng, Early Access, https://doi.org/10.1007/s13369-024-09300-2.
There are 36 citations in total.

Details

Primary Language English
Subjects General Physics
Journal Section Research Articles
Authors

Aydın Yıldırım 0000-0003-2141-5355

Early Pub Date September 10, 2024
Publication Date September 15, 2024
Submission Date July 1, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024

Cite

APA Yıldırım, A. (2024). Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride. Black Sea Journal of Engineering and Science, 7(5), 1022-1030. https://doi.org/10.34248/bsengineering.1508116
AMA Yıldırım A. Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride. BSJ Eng. Sci. September 2024;7(5):1022-1030. doi:10.34248/bsengineering.1508116
Chicago Yıldırım, Aydın. “Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride”. Black Sea Journal of Engineering and Science 7, no. 5 (September 2024): 1022-30. https://doi.org/10.34248/bsengineering.1508116.
EndNote Yıldırım A (September 1, 2024) Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride. Black Sea Journal of Engineering and Science 7 5 1022–1030.
IEEE A. Yıldırım, “Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride”, BSJ Eng. Sci., vol. 7, no. 5, pp. 1022–1030, 2024, doi: 10.34248/bsengineering.1508116.
ISNAD Yıldırım, Aydın. “Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride”. Black Sea Journal of Engineering and Science 7/5 (September 2024), 1022-1030. https://doi.org/10.34248/bsengineering.1508116.
JAMA Yıldırım A. Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride. BSJ Eng. Sci. 2024;7:1022–1030.
MLA Yıldırım, Aydın. “Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride”. Black Sea Journal of Engineering and Science, vol. 7, no. 5, 2024, pp. 1022-30, doi:10.34248/bsengineering.1508116.
Vancouver Yıldırım A. Fast and Thermal Neutron Removal Cross-Section for Ceramic Glass Aluminum Oxynitride. BSJ Eng. Sci. 2024;7(5):1022-30.

                                                24890