Research Article
BibTex RIS Cite

İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi

Year 2025, , 41 - 53, 15.01.2025
https://doi.org/10.34248/bsengineering.1552654

Abstract

Taş ocaklarında blok üretimi ve yapıların inşaatları için taşlar belirli boyutlarda kesilerek kullanılmaktadır. Bu kesim işlemleri neticesinde atık olarak ortaya taş tozu çıkmaktadır. Ancak taş işleme tesislerinde taş atıklarının giderek artması, bu atıkların düzenli olarak depolanmamasına ve doğaya bırakılmasına neden olmaktadır. Bu nedenle, taş atık miktarının azaltılması ve doğaya bırakılmasının önlenmesi için taş atıklarının potansiyel bir hammadde kaynağı olarak değerlendirilmesi gerekmektedir. Bu çalışmada, Nevşehir ilinde taş kesimi sonucunda ortaya çıkan ignimbirit taş atıklarının değerlendirilmesine yönelik epoksi matrisli kompozitler üretilmiştir. Kompozitlerin üretiminde, farklı tane büyüklüğüne (63 μm, 150 μm, 250 μm, 500 μm, 1000 μm) sahip ignimbirit taş tozu (İTT) ve matris olarak ise epoksi reçine (ER) kullanılmıştır. Taş tozlarının tane boyutlarındaki değişimin, kompozitlerin mekanik ve hidrofobik özelliklerine olan etkisi araştırılmıştır. Kompozitin en uygun bileşim oranı, ağırlıkça % 30 epoksi matris ve % 70 oranında <63 μm büyüklüğüne sahip İTT ile hazırlanmıştır. Bu kompozitle, 51 MPa’ya kadar yüksek basınç mukavemeti elde edilmiştir. Ayrıca kompozitin temas açısı 102,9° değeri, orijinal ignimbirit taşının 8,5° değerinden daha yüksek olması, kompozitin ignimbirit taşına göre daha fazla hidrofobik yüzey olduğunu göstermektedir. Sonuç olarak, epoksi matrisli kompozit, yüksek mukavemeti ve hidrofobik özellikleriyle, binalardaki su emme problemini azaltmak üzere çeşitli uygulamalar için büyük bir potansiyel sağlar.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

References

  • Anonim. 2023. İstanbul madenler ve metaller ihracatçıları ve birliği, maden sektör görünümü. URL: https://imib.org.tr/wp-content/uploads/2023.pdf (erişim tarihi: 9 Haziran 2024).
  • Arı AC. 2024. Nevşehir taşlarıyla inşa edilen tarihi yapıların restorasyonuna yönelik polyester matris ve taş tozu kullanılarak üretilen kompozit harçlarda tane boyutunun dayanımına etkisinin araştırılması. Online J Art Des, 12(2): 144-157.
  • Ari AC, Tosun M, Eker YR. 2024. Polymer matrix and stone powder based composite mortar for the restoration of sille stone structures. Stud Conserv, 69(1): 50-57.
  • ASTM-D695-10. 2010. Standard test method for compressive properties of polymer matrix composite materials. American Society for Testing and Materials, USA, pp: 1-3.
  • Awad AH, El-Gamasy R, Abd El-Wahab AA, Abdellatif MH. 2020. Assessment of mechanical properties of HDPE composite with addition of marble and granite dust. Ain Shams Eng J, 11(4): 1211-1217.
  • Aydar E, Schmitt AK, Çubukçu HE, Akin L, Ersoy O, Sen E, Duncan RA, Atici G. 2012. Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. J Volcanol Geotherm Res, 213-214: 83-97.
  • Bilgin N, Yeprem HA, Arslan S, Bilgin A, Günay E, Marşoglu M. 2012. Use of waste marble powder in brick industry. Constr Build Mater, 29: 449-457.
  • Carvalho EAS, Vilela NdF, Monteiro SN, Vieira CMF, Silva LCd. 2018. Novel artificial ornamental stone developed with quarry waste in epoxy composite. Mater Res, 21: e20171104.
  • Cota FP, Alves RAA, Panzera TH, Strecker K, Christoforo AL, Borges PHR. 2012. Physical properties and microstructure of ceramic–polymer composites for restoration works. Mater Sci Eng A, 531: 28-34.
  • Çelikten S. 2021. Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Adv Powder Technol, 32(1): 1-9.
  • Çiflikli M. 2020. Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: an example from Miocene ignimbrite units in Avanos, Central Turkey. Arabian J Geosci, 13: 1044.
  • Dinçer İ, Bostancı M. 2019. Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environ Earth Sci, 78: 7.
  • Doan TTL, Brodowsky HM, Gohs U, Mäder E. 2018. Re‐use of marble stone powders in producing unsaturated polyester composites. Adv Eng Mater, 20(7): 1701061.
  • Erguler ZA. 2009. Field-based experimental determination of the weathering rates of the Cappadocian tuffs. Eng Geol, 105(3-4): 186-199.
  • Ertek N, Öner F. 2008. Mineralogy, geochemistry of altered tuff from Cappadocia (Central Anatolia) and its use as potential raw material for the manufacturing of white cement. Appl Clay Sci, 42(1-2): 300-309.
  • Gonçalves JAV, Campos DAT, Oliveira GDJ, Rosa MdLdS, Macêdo, MA. 2014. Mechanical properties of epoxy resin based on granite stone powder from the Sergipe fold-and-thrust belt composites. Mater Res, 17(4): 878-887.
  • Heriyanto, Pahlevani F, Sahajwalla V. 2019. Effect of different waste filler and silane coupling agent on the mechanical properties of powder-resin composite. J Clean Prod, 224: 940-956.
  • İnce İ. 2021. Relationship between capillary water absorption value, capillary water absorption speed, and capillary rise height in pyroclastic rocks. Min Metall Explor, 38: 841-853.
  • Kazancı N, Gürbüz A. 2014. Natural stones qualified as geological heritage in Turkey. Geol Bull Turk, 57(1): 19-44.
  • Korkanç M, Solak B. 2016. Estimation of engineering properties of selected tuffs by using grain/matrix ratio. J Afr Earth Sci, 120: 160-172.
  • Korkanç M. 2007. The effect of geomechanical properties of ignimbrites on their usage as building stone: Nevşehir stone. J Geol Eng, 31(1): 49-60.
  • Mathur VK. 2006. Composite materials from local resources. Constr Build Mater, 20(7): 470-477.
  • Nana A, Kamseu E, Akono A-T, Ngouné J, Djobo JNY, Tchakoute, HK, Bignozzi MC, Leonelli C. 2021. Particles size and distribution on the improvement of the mechanical performance of high strength solid solution based inorganic polymer composites: a microstructural approach. Mater Chem Phys, 267: 124602.
  • Ngayakamo B, Bello A, Onwualu AP. 2022. Valorization of granite waste powder as a secondary flux material for sustainable production of ceramic tiles. Clean Mater, 4: 100055.
  • Piper JDA, Koçbulut F, Gürsoy H, Tatar O, Viereck L, Lepetit P, Roberts AP, Akpınar Z. 2013. Palaeomagnetism of the Cappadocian Volcanic Succession, Central Turkey: Major ignimbrite emplacement during two short (Miocene) episodes and Neogene tectonics of the Anatolian collage. J Volcanol Geotherm Res, 262: 47-67.
  • Sahu R, Gupta MK, Chaturvedi R, Tripaliya SS, Pappu A. 2020. Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Compos B Eng, 182: 107656.
  • Savadkoohi MS, Reisi M. 2020. Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete. J Clean Prod, 266: 121973.
  • Silva TLDC, Carvalho EAS, Barreto GNS, da Silva TBP, da Cunha Demartini TJ, Vieira CMF. 2023. Characterization of artificial stone developed with granite waste and glass waste in epoxy matrix. J Mater Res Technol, 26: 2528-2538.
  • Singh S, Nagar R, Agrawal V. 2016. Performance of granite cutting waste concrete under adverse exposure conditions. J Clean Prod, 127: 172-182.
  • Song W, Wang Q, Qu L, Li X, Xu S. 2022. Study of water absorption and corrosion resistance of the mortar with waste marble powder. Constr Build Mater, 345: 128235.
  • Vijayalakshmi M, Sekar ASS, Ganesh prabhu G. 2013. Strength and durability properties of concrete made with granite industry waste. Constr Build Mater, 46: 1-7.
  • Wu X, Yang F, Lu G, Zhao X, Chen Z, Qian S. 2021. A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications. Chem Eng J, 412: 128725.
  • Yurdakul M. 2020. Natural stone waste generation from the perspective of natural stone processing plants: An industrial-scale case study in the province of Bilecik, Turkey. J Clean Prod, 276: 123339.
  • Yurt Ü, Çelikten S, Atabey İİ. 2024. Post-fire residual mechanical and microstructural properties of waste basalt and glass powder-based geopolymer mortars. J Build Eng, 94: 109941.
  • Zhang Y, Ding C, Zhang N, Chen C, Di X, Zhang Y. 2021. Surface modification of silica micro-powder by titanate coupling agent and its utilization in PVC based composite. Constr Build Mater, 307: 124933.
  • Zielecka M, Bujnowska E. 2006. Silicone-containing polymer matrices as protective coatings: Properties and applications. Prog Org Coat, 55(2): 160-167.

Investigation of Mechanical and Hydrophobic Properties of Epoxy Matrix Composites for Recycling of Ignimbrite Stone Wastes

Year 2025, , 41 - 53, 15.01.2025
https://doi.org/10.34248/bsengineering.1552654

Abstract

In quarries, stones are cut to certain sizes for block production and construction of structures. As a result of these cutting processes, stone powder is produced as waste. However, the increasing amount of stone waste in stone processing plants causes these wastes not to be stored regularly and to be released into nature. Therefore, stone waste should be recycled as a potential raw material source to reduce the amount of stone waste and prevent it from being released into nature. In this study, epoxy matrix composites were produced for the recycling of ignimbrite stone waste resulting from stone cutting in Nevsehir province. In the production of composites, ignimbrite stone powder (ISP) with different grain sizes (63 μm, 150 μm, 250 μm, 500 μm, 1000 μm) and epoxy resin (ER) were used as the matrix. The effect of the change in the particle size of stone powders on the mechanical and hydrophobic properties of the composites was investigated. The most suitable composition ratio of the composite was prepared with 30% epoxy matrix and 70% ISP with a grain size of <63 μm. High compressive strength up to 51 MPa was obtained with this composite. Moreover, the contact angle of the composite was 102.9°, which was higher than the 8.5° value of the original ignimbrite stone, indicating that the composite has a more hydrophobic surface than the ignimbrite stone. As a result, the epoxy matrix composite provides a great potential for various applications to reduce the water absorption problem in buildings with its high strength and hydrophobic properties.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

References

  • Anonim. 2023. İstanbul madenler ve metaller ihracatçıları ve birliği, maden sektör görünümü. URL: https://imib.org.tr/wp-content/uploads/2023.pdf (erişim tarihi: 9 Haziran 2024).
  • Arı AC. 2024. Nevşehir taşlarıyla inşa edilen tarihi yapıların restorasyonuna yönelik polyester matris ve taş tozu kullanılarak üretilen kompozit harçlarda tane boyutunun dayanımına etkisinin araştırılması. Online J Art Des, 12(2): 144-157.
  • Ari AC, Tosun M, Eker YR. 2024. Polymer matrix and stone powder based composite mortar for the restoration of sille stone structures. Stud Conserv, 69(1): 50-57.
  • ASTM-D695-10. 2010. Standard test method for compressive properties of polymer matrix composite materials. American Society for Testing and Materials, USA, pp: 1-3.
  • Awad AH, El-Gamasy R, Abd El-Wahab AA, Abdellatif MH. 2020. Assessment of mechanical properties of HDPE composite with addition of marble and granite dust. Ain Shams Eng J, 11(4): 1211-1217.
  • Aydar E, Schmitt AK, Çubukçu HE, Akin L, Ersoy O, Sen E, Duncan RA, Atici G. 2012. Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. J Volcanol Geotherm Res, 213-214: 83-97.
  • Bilgin N, Yeprem HA, Arslan S, Bilgin A, Günay E, Marşoglu M. 2012. Use of waste marble powder in brick industry. Constr Build Mater, 29: 449-457.
  • Carvalho EAS, Vilela NdF, Monteiro SN, Vieira CMF, Silva LCd. 2018. Novel artificial ornamental stone developed with quarry waste in epoxy composite. Mater Res, 21: e20171104.
  • Cota FP, Alves RAA, Panzera TH, Strecker K, Christoforo AL, Borges PHR. 2012. Physical properties and microstructure of ceramic–polymer composites for restoration works. Mater Sci Eng A, 531: 28-34.
  • Çelikten S. 2021. Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Adv Powder Technol, 32(1): 1-9.
  • Çiflikli M. 2020. Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: an example from Miocene ignimbrite units in Avanos, Central Turkey. Arabian J Geosci, 13: 1044.
  • Dinçer İ, Bostancı M. 2019. Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environ Earth Sci, 78: 7.
  • Doan TTL, Brodowsky HM, Gohs U, Mäder E. 2018. Re‐use of marble stone powders in producing unsaturated polyester composites. Adv Eng Mater, 20(7): 1701061.
  • Erguler ZA. 2009. Field-based experimental determination of the weathering rates of the Cappadocian tuffs. Eng Geol, 105(3-4): 186-199.
  • Ertek N, Öner F. 2008. Mineralogy, geochemistry of altered tuff from Cappadocia (Central Anatolia) and its use as potential raw material for the manufacturing of white cement. Appl Clay Sci, 42(1-2): 300-309.
  • Gonçalves JAV, Campos DAT, Oliveira GDJ, Rosa MdLdS, Macêdo, MA. 2014. Mechanical properties of epoxy resin based on granite stone powder from the Sergipe fold-and-thrust belt composites. Mater Res, 17(4): 878-887.
  • Heriyanto, Pahlevani F, Sahajwalla V. 2019. Effect of different waste filler and silane coupling agent on the mechanical properties of powder-resin composite. J Clean Prod, 224: 940-956.
  • İnce İ. 2021. Relationship between capillary water absorption value, capillary water absorption speed, and capillary rise height in pyroclastic rocks. Min Metall Explor, 38: 841-853.
  • Kazancı N, Gürbüz A. 2014. Natural stones qualified as geological heritage in Turkey. Geol Bull Turk, 57(1): 19-44.
  • Korkanç M, Solak B. 2016. Estimation of engineering properties of selected tuffs by using grain/matrix ratio. J Afr Earth Sci, 120: 160-172.
  • Korkanç M. 2007. The effect of geomechanical properties of ignimbrites on their usage as building stone: Nevşehir stone. J Geol Eng, 31(1): 49-60.
  • Mathur VK. 2006. Composite materials from local resources. Constr Build Mater, 20(7): 470-477.
  • Nana A, Kamseu E, Akono A-T, Ngouné J, Djobo JNY, Tchakoute, HK, Bignozzi MC, Leonelli C. 2021. Particles size and distribution on the improvement of the mechanical performance of high strength solid solution based inorganic polymer composites: a microstructural approach. Mater Chem Phys, 267: 124602.
  • Ngayakamo B, Bello A, Onwualu AP. 2022. Valorization of granite waste powder as a secondary flux material for sustainable production of ceramic tiles. Clean Mater, 4: 100055.
  • Piper JDA, Koçbulut F, Gürsoy H, Tatar O, Viereck L, Lepetit P, Roberts AP, Akpınar Z. 2013. Palaeomagnetism of the Cappadocian Volcanic Succession, Central Turkey: Major ignimbrite emplacement during two short (Miocene) episodes and Neogene tectonics of the Anatolian collage. J Volcanol Geotherm Res, 262: 47-67.
  • Sahu R, Gupta MK, Chaturvedi R, Tripaliya SS, Pappu A. 2020. Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Compos B Eng, 182: 107656.
  • Savadkoohi MS, Reisi M. 2020. Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete. J Clean Prod, 266: 121973.
  • Silva TLDC, Carvalho EAS, Barreto GNS, da Silva TBP, da Cunha Demartini TJ, Vieira CMF. 2023. Characterization of artificial stone developed with granite waste and glass waste in epoxy matrix. J Mater Res Technol, 26: 2528-2538.
  • Singh S, Nagar R, Agrawal V. 2016. Performance of granite cutting waste concrete under adverse exposure conditions. J Clean Prod, 127: 172-182.
  • Song W, Wang Q, Qu L, Li X, Xu S. 2022. Study of water absorption and corrosion resistance of the mortar with waste marble powder. Constr Build Mater, 345: 128235.
  • Vijayalakshmi M, Sekar ASS, Ganesh prabhu G. 2013. Strength and durability properties of concrete made with granite industry waste. Constr Build Mater, 46: 1-7.
  • Wu X, Yang F, Lu G, Zhao X, Chen Z, Qian S. 2021. A breathable and environmentally friendly superhydrophobic coating for anti-condensation applications. Chem Eng J, 412: 128725.
  • Yurdakul M. 2020. Natural stone waste generation from the perspective of natural stone processing plants: An industrial-scale case study in the province of Bilecik, Turkey. J Clean Prod, 276: 123339.
  • Yurt Ü, Çelikten S, Atabey İİ. 2024. Post-fire residual mechanical and microstructural properties of waste basalt and glass powder-based geopolymer mortars. J Build Eng, 94: 109941.
  • Zhang Y, Ding C, Zhang N, Chen C, Di X, Zhang Y. 2021. Surface modification of silica micro-powder by titanate coupling agent and its utilization in PVC based composite. Constr Build Mater, 307: 124933.
  • Zielecka M, Bujnowska E. 2006. Silicone-containing polymer matrices as protective coatings: Properties and applications. Prog Org Coat, 55(2): 160-167.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Architectural Engineering, Construction Materials
Journal Section Research Articles
Authors

Ahmet Cihat Arı 0000-0002-4690-8968

Publication Date January 15, 2025
Submission Date September 19, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2025

Cite

APA Arı, A. C. (2025). İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi. Black Sea Journal of Engineering and Science, 8(1), 41-53. https://doi.org/10.34248/bsengineering.1552654
AMA Arı AC. İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi. BSJ Eng. Sci. January 2025;8(1):41-53. doi:10.34248/bsengineering.1552654
Chicago Arı, Ahmet Cihat. “İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik Ve Hidrofobik Özelliklerinin İncelenmesi”. Black Sea Journal of Engineering and Science 8, no. 1 (January 2025): 41-53. https://doi.org/10.34248/bsengineering.1552654.
EndNote Arı AC (January 1, 2025) İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi. Black Sea Journal of Engineering and Science 8 1 41–53.
IEEE A. C. Arı, “İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi”, BSJ Eng. Sci., vol. 8, no. 1, pp. 41–53, 2025, doi: 10.34248/bsengineering.1552654.
ISNAD Arı, Ahmet Cihat. “İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik Ve Hidrofobik Özelliklerinin İncelenmesi”. Black Sea Journal of Engineering and Science 8/1 (January 2025), 41-53. https://doi.org/10.34248/bsengineering.1552654.
JAMA Arı AC. İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi. BSJ Eng. Sci. 2025;8:41–53.
MLA Arı, Ahmet Cihat. “İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik Ve Hidrofobik Özelliklerinin İncelenmesi”. Black Sea Journal of Engineering and Science, vol. 8, no. 1, 2025, pp. 41-53, doi:10.34248/bsengineering.1552654.
Vancouver Arı AC. İgnimbirit Taş Atıklarının Değerlendirilmesine Yönelik Epoksi Matrisli Kompozitlerin Mekanik ve Hidrofobik Özelliklerinin İncelenmesi. BSJ Eng. Sci. 2025;8(1):41-53.

                                                24890