Research Article
BibTex RIS Cite

Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.)

Year 2025, Volume: 8 Issue: 3, 863 - 874, 15.05.2025
https://doi.org/10.34248/bsengineering.1640556

Abstract

In evaluations conducted under high and low nitrogen conditions, the morphological and physiological performance of pepper genotypes was compared across tissue culture and hydroponic systems. Under low nitrogen conditions, most genotypes showed similar rankings in both systems, indicating stable and environment-independent genotypic responses. Notably, 21 H-1-1, ERÜ 462, and ERÜ 457 consistently performed well across all traits, whereas 24-H-6, 29-H-10, and ERÜ 1248 ranked among the lowest-performing genotypes. In contrast, under high nitrogen conditions, genotypic performance varied more strongly depending on the cultivation system. Genotypes grown in tissue culture showed greater biomass accumulation and nitrogen uptake. While 21 H-1-1, ERÜ 462, and ERÜ 457 were among the top performers in tissue culture, their counterparts in hydroponic culture exhibited relatively lower performance. This indicates that system-specific effects play a more prominent role under high nitrogen supply. Considering both nitrogen levels, 21 H-1-1 and ERÜ 462 emerged as promising candidates for breeding programs due to their high nitrogen use efficiency and consistent performance across multiple environments. If a low-cost selection approach is desired, preliminary selection under low nitrogen conditions using tissue culture may be sufficient and effective for genotype differentiation.

References

  • Arab L, Ehsanpour AA. 2006. The effects of ascorbic acid on salt-induced alfalfa (Medicago sativa L.) in in vitro culture. Biokemistri, 18(2).
  • Barber SA, Silberbush M. 2015. Plant root morphology and nutrient uptake. In: Roots, Nutrient and Water Influx, and Plant Growth, London, UK, pp: 65-87.
  • Bolat İ, Kara Ö. 2017. Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. Bartın Orman Fak Derg, 19: 218-228.
  • Daneshmand F, Arvin MJ, Kalantari KM. 2010. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant, 32: 91-101.
  • Fageria NK, Baligar VC. 2003. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. J Plant Nutr, 26: 1315-1333.
  • Föhse D, Claassen N, Jungk A. 1988. Phosphorus efficiency of plants - I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil, 110: 101-109.
  • Graciano C, Tambussi EA, Castán E, Guiamet JJ. 2009. Dry mass partitioning and nitrogen uptake by Eucalyptus grandis plants in response to localized or mixed application of phosphorus. Plant Soil, 319: 175-184.
  • Hirel B, Le Gouis J, Ney B, Gallais A. 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot, 58: 2369-2387.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn, 1950: 347.
  • Homayoun H, Mehrabi P, Daliri MS. 2011. Study of salinity stress effect on two potato (Solanum tuberosum L.) cultivars in vitro. J Agric Environ Sci, 11: 729-732.
  • Jay S, Maupas F, Bendoula R, Gorretta N. 2017. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Res, 210: 33-46.
  • Kirkby EA. 2023. Introduction, definition, and classification of nutrients. In: Marschner’s Mineral Nutrition of Plants, pp: 3-9.
  • Kjeldahl J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Anal Chem, 22: 366-382.
  • Loudari A, Benadis C, Naciri R, Soulaimania A, Zerouala Y, El Gharous M, Kalaji HM, Oukarroum A. 2020. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J Plant Interact, 15: 398-405.
  • Machado TA, Fernandes MS. 2001. Participatory maize breeding for low nitrogen tolerance. Euphytica, 122: 567-573.
  • Madeira AC, De Varennes A. 2005. Use of chlorophyll meter to assess the effect of nitrogen on sweet pepper development and growth. J Plant Nutr, 28: 1133-1144.
  • Matsuhisma M, Nagano H, Inubushi K. 2009. Global nitrogen cycling and its availability from soils. In: Nitrogen Assimilation in Plants, London, UK, pp: 19-32.
  • Moll RH, Kamprath EJ, Jackson WA. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 74: 562-564.
  • Murshed R, Najla S, Albiski F, Kassem I, Jbour M, Al-Said H. 2018. Using growth parameters for in vitro screening of potato varieties tolerant to salt stress. J Agri Sci Technol, 17 (2): 483-494
  • Nawaz MA, Wang L, Jiao Y, Chen C, Zhao L, Mei M, Yu Y, Bie Z, Huang Y. 2018. Pumpkin rootstock improves nitrogen use efficiency of watermelon scion by enhancing nutrient uptake, cytokinin content, and expression of nitrate reductase genes. Plant Growth Regul, 82: 233-246.
  • Pinar H, Yetişir H, Aydin A, Yigit MA, Ulaş A, Aydin H. 2024. Determination of in vitro salt testing efficiency and salinity tolerance of different pepper (Capsicum annuum L.) genotypes. Genetika, 56(2): 305-319.
  • Prado De Mello R. 2021. Mineral nutrition of tropical plants. Elsevier Academic Press, Burlington, MA, USA, pp: 339.
  • Ruiz JM, Rivero RM, Cervilla LM, Castellano R, Romero L. 2006. Grafting to improve nitrogen-use efficiency traits in tobacco plants. J Sci Food Agric, 86(6): 1014-1021.
  • Schulte Auf’m Erley G, Wijaya KA, Ulas A, Becker H, Wiesler F, Horst WJ. 2007. Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plant, 130(4): 519-531.
  • Soleimani A, Talaei AR, Naghavi MR, Zamani Z. 2010. Male gametophytic and sporophytic screening of olive cultivars for salt stress tolerance. J Agric Sci Technol, 12: 173-180.
  • Tumbare AD, Nikam D, 2004. Effect of planting and fertigation on growth and yield of green chilli (Capsicum annuum). Indian J Agric Sci, 75(5): 242-245.
  • Ulas A, Doganci E, Ulas F, Yetisir H. 2019. Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of bottle gourd and rootstock potential for watermelon. Plants Basel, 8(3): 77.
  • Ulas A, Schulte Auf’m Erley G, Kamh M, Wiesler F, Horst WJ. 2012. Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. J Plant Nutr Soil Sci, 175(3): 489-498.
  • Ulas A, Yetisir H, Ulas F. 2022. Genotypic variation in nitrogen utilization efficiency of pepper (Capsicum annuum L.) under different nitrogen supply in hydroponic conditions. Gesunde Pflanzen, 74: 629-638.
  • Ulas F, Erdogdu S, Yetisir H, Ulas A. 2021b. Investigation on morphology and physiology of nitrogen efficiency in different pepper (Capsicum annuum L.) inbred lines. Genetika, 53(3): 1253-1272.
  • Ulas F, Yetisir H, Ulas A. 2021a. Root-growth characteristics contributing to nitrogen efficiency of reciprocally grafted potatoes (Solanum tuberosum L.) under hydroponic conditions. Gesunde Pflanzen, 73: 417-425.
  • Zhang J, Tong T, Potcho PM, Huang S, Ma L, Tang X. 2020a. Nitrogen effects on yield, quality and physiological characteristics of giant rice. Agronomy, 10(11): 1816.
  • Zhang Q, Song Y, Wu Z, Yan X, Gunina A, Kuzyakov Y, Xiong Z. 2020b. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice wheat rotation. J Clean Prod, 242: 118435.

Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.)

Year 2025, Volume: 8 Issue: 3, 863 - 874, 15.05.2025
https://doi.org/10.34248/bsengineering.1640556

Abstract

In evaluations conducted under high and low nitrogen conditions, the morphological and physiological performance of pepper genotypes was compared across tissue culture and hydroponic systems. Under low nitrogen conditions, most genotypes showed similar rankings in both systems, indicating stable and environment-independent genotypic responses. Notably, 21 H-1-1, ERÜ 462, and ERÜ 457 consistently performed well across all traits, whereas 24-H-6, 29-H-10, and ERÜ 1248 ranked among the lowest-performing genotypes. In contrast, under high nitrogen conditions, genotypic performance varied more strongly depending on the cultivation system. Genotypes grown in tissue culture showed greater biomass accumulation and nitrogen uptake. While 21 H-1-1, ERÜ 462, and ERÜ 457 were among the top performers in tissue culture, their counterparts in hydroponic culture exhibited relatively lower performance. This indicates that system-specific effects play a more prominent role under high nitrogen supply. Considering both nitrogen levels, 21 H-1-1 and ERÜ 462 emerged as promising candidates for breeding programs due to their high nitrogen use efficiency and consistent performance across multiple environments. If a low-cost selection approach is desired, preliminary selection under low nitrogen conditions using tissue culture may be sufficient and effective for genotype differentiation.

References

  • Arab L, Ehsanpour AA. 2006. The effects of ascorbic acid on salt-induced alfalfa (Medicago sativa L.) in in vitro culture. Biokemistri, 18(2).
  • Barber SA, Silberbush M. 2015. Plant root morphology and nutrient uptake. In: Roots, Nutrient and Water Influx, and Plant Growth, London, UK, pp: 65-87.
  • Bolat İ, Kara Ö. 2017. Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. Bartın Orman Fak Derg, 19: 218-228.
  • Daneshmand F, Arvin MJ, Kalantari KM. 2010. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant, 32: 91-101.
  • Fageria NK, Baligar VC. 2003. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. J Plant Nutr, 26: 1315-1333.
  • Föhse D, Claassen N, Jungk A. 1988. Phosphorus efficiency of plants - I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil, 110: 101-109.
  • Graciano C, Tambussi EA, Castán E, Guiamet JJ. 2009. Dry mass partitioning and nitrogen uptake by Eucalyptus grandis plants in response to localized or mixed application of phosphorus. Plant Soil, 319: 175-184.
  • Hirel B, Le Gouis J, Ney B, Gallais A. 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot, 58: 2369-2387.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn, 1950: 347.
  • Homayoun H, Mehrabi P, Daliri MS. 2011. Study of salinity stress effect on two potato (Solanum tuberosum L.) cultivars in vitro. J Agric Environ Sci, 11: 729-732.
  • Jay S, Maupas F, Bendoula R, Gorretta N. 2017. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Res, 210: 33-46.
  • Kirkby EA. 2023. Introduction, definition, and classification of nutrients. In: Marschner’s Mineral Nutrition of Plants, pp: 3-9.
  • Kjeldahl J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Anal Chem, 22: 366-382.
  • Loudari A, Benadis C, Naciri R, Soulaimania A, Zerouala Y, El Gharous M, Kalaji HM, Oukarroum A. 2020. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J Plant Interact, 15: 398-405.
  • Machado TA, Fernandes MS. 2001. Participatory maize breeding for low nitrogen tolerance. Euphytica, 122: 567-573.
  • Madeira AC, De Varennes A. 2005. Use of chlorophyll meter to assess the effect of nitrogen on sweet pepper development and growth. J Plant Nutr, 28: 1133-1144.
  • Matsuhisma M, Nagano H, Inubushi K. 2009. Global nitrogen cycling and its availability from soils. In: Nitrogen Assimilation in Plants, London, UK, pp: 19-32.
  • Moll RH, Kamprath EJ, Jackson WA. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 74: 562-564.
  • Murshed R, Najla S, Albiski F, Kassem I, Jbour M, Al-Said H. 2018. Using growth parameters for in vitro screening of potato varieties tolerant to salt stress. J Agri Sci Technol, 17 (2): 483-494
  • Nawaz MA, Wang L, Jiao Y, Chen C, Zhao L, Mei M, Yu Y, Bie Z, Huang Y. 2018. Pumpkin rootstock improves nitrogen use efficiency of watermelon scion by enhancing nutrient uptake, cytokinin content, and expression of nitrate reductase genes. Plant Growth Regul, 82: 233-246.
  • Pinar H, Yetişir H, Aydin A, Yigit MA, Ulaş A, Aydin H. 2024. Determination of in vitro salt testing efficiency and salinity tolerance of different pepper (Capsicum annuum L.) genotypes. Genetika, 56(2): 305-319.
  • Prado De Mello R. 2021. Mineral nutrition of tropical plants. Elsevier Academic Press, Burlington, MA, USA, pp: 339.
  • Ruiz JM, Rivero RM, Cervilla LM, Castellano R, Romero L. 2006. Grafting to improve nitrogen-use efficiency traits in tobacco plants. J Sci Food Agric, 86(6): 1014-1021.
  • Schulte Auf’m Erley G, Wijaya KA, Ulas A, Becker H, Wiesler F, Horst WJ. 2007. Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plant, 130(4): 519-531.
  • Soleimani A, Talaei AR, Naghavi MR, Zamani Z. 2010. Male gametophytic and sporophytic screening of olive cultivars for salt stress tolerance. J Agric Sci Technol, 12: 173-180.
  • Tumbare AD, Nikam D, 2004. Effect of planting and fertigation on growth and yield of green chilli (Capsicum annuum). Indian J Agric Sci, 75(5): 242-245.
  • Ulas A, Doganci E, Ulas F, Yetisir H. 2019. Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of bottle gourd and rootstock potential for watermelon. Plants Basel, 8(3): 77.
  • Ulas A, Schulte Auf’m Erley G, Kamh M, Wiesler F, Horst WJ. 2012. Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. J Plant Nutr Soil Sci, 175(3): 489-498.
  • Ulas A, Yetisir H, Ulas F. 2022. Genotypic variation in nitrogen utilization efficiency of pepper (Capsicum annuum L.) under different nitrogen supply in hydroponic conditions. Gesunde Pflanzen, 74: 629-638.
  • Ulas F, Erdogdu S, Yetisir H, Ulas A. 2021b. Investigation on morphology and physiology of nitrogen efficiency in different pepper (Capsicum annuum L.) inbred lines. Genetika, 53(3): 1253-1272.
  • Ulas F, Yetisir H, Ulas A. 2021a. Root-growth characteristics contributing to nitrogen efficiency of reciprocally grafted potatoes (Solanum tuberosum L.) under hydroponic conditions. Gesunde Pflanzen, 73: 417-425.
  • Zhang J, Tong T, Potcho PM, Huang S, Ma L, Tang X. 2020a. Nitrogen effects on yield, quality and physiological characteristics of giant rice. Agronomy, 10(11): 1816.
  • Zhang Q, Song Y, Wu Z, Yan X, Gunina A, Kuzyakov Y, Xiong Z. 2020b. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice wheat rotation. J Clean Prod, 242: 118435.
There are 33 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology, Plant Physiology, Plant Morphology and Anatomy
Journal Section Research Article
Authors

Alim Aydın 0000-0002-9424-5556

Hasan Pinar 0000-0002-0811-8228

Firdes Ulaş 0000-0001-6692-8424

Halit Yetişir 0000-0001-6955-9513

Mirac Şahin 0000-0002-7699-6380

Hamide Aydın 0000-0002-0588-6192

Submission Date February 16, 2025
Acceptance Date April 13, 2025
Publication Date May 15, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Aydın, A., Pinar, H., Ulaş, F., … Yetişir, H. (2025). Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.). Black Sea Journal of Engineering and Science, 8(3), 863-874. https://doi.org/10.34248/bsengineering.1640556
AMA Aydın A, Pinar H, Ulaş F, Yetişir H, Şahin M, Aydın H. Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.). BSJ Eng. Sci. May 2025;8(3):863-874. doi:10.34248/bsengineering.1640556
Chicago Aydın, Alim, Hasan Pinar, Firdes Ulaş, Halit Yetişir, Mirac Şahin, and Hamide Aydın. “Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum Annuum L.)”. Black Sea Journal of Engineering and Science 8, no. 3 (May 2025): 863-74. https://doi.org/10.34248/bsengineering.1640556.
EndNote Aydın A, Pinar H, Ulaş F, Yetişir H, Şahin M, Aydın H (May 1, 2025) Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.). Black Sea Journal of Engineering and Science 8 3 863–874.
IEEE A. Aydın, H. Pinar, F. Ulaş, H. Yetişir, M. Şahin, and H. Aydın, “Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.)”, BSJ Eng. Sci., vol. 8, no. 3, pp. 863–874, 2025, doi: 10.34248/bsengineering.1640556.
ISNAD Aydın, Alim et al. “Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum Annuum L.)”. Black Sea Journal of Engineering and Science 8/3 (May2025), 863-874. https://doi.org/10.34248/bsengineering.1640556.
JAMA Aydın A, Pinar H, Ulaş F, Yetişir H, Şahin M, Aydın H. Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.). BSJ Eng. Sci. 2025;8:863–874.
MLA Aydın, Alim et al. “Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum Annuum L.)”. Black Sea Journal of Engineering and Science, vol. 8, no. 3, 2025, pp. 863-74, doi:10.34248/bsengineering.1640556.
Vancouver Aydın A, Pinar H, Ulaş F, Yetişir H, Şahin M, Aydın H. Comparison of In Vitro and Hydroponic Screening Methods for Nitrogen Efficiency in Pepper (Capsicum annuum L.). BSJ Eng. Sci. 2025;8(3):863-74.

                            24890