In this paper, we propose a comprehensive and scalable framework for incident assignment and prioritization in Security Operations Centers (SOCs). The proposed model aims to optimize SOC workflows by addressing key operational challenges such as analyst fatigue, alert overload, and inconsistent incident handling. Our framework evaluates each incident using a multi-factor scoring model that incorporates incident severity, service-level agreement (SLA) urgency, incident type, asset criticality, threat intelligence indicators, frequency of repetition, and a correlation score derived from historical incident data. We formalize this evaluation through a set of mathematical functions that compute a dynamic incident score and derive incident complexity. In parallel, analyst profiles are quantified using Analyst Load Factor (ALF) and Experience Match Factor (EMF), two novel metrics that account for both workload distribution and expertise alignment. The incident–analyst matching process is expressed as a constrained optimization problem, where the final assignment score is computed by balancing incident priority with analyst suitability. This formulation enables automated, real-time assignment of incidents to the most appropriate analysts, while ensuring both operational fairness and triage precision. The model is validated using algorithmic pseudocode, scoring tables, and a simplified case study, which illustrates the real-world applicability and decision logic of the framework in large-scale SOC environments. To validate the framework under real-world conditions, an empirical case study was conducted using 10 attack scenarios from the CICIDS2017 benchmark dataset. Overall, our contributions lie in the formalization of a dual-factor analyst scoring scheme and the integration of contextual incident features into an adaptive, rule-based assignment framework. To further strengthen operational value, future work will explore adaptive weighting mechanisms and integration with real-time SIEM pipelines. Additionally, feedback loops and supervised learning models will be incorporated to continuously refine analyst-incident matching and prioritization.
Incident management Analyst assignment SOC optimization Incident prioritization Correlation score SLA urgency
In this paper, we propose a comprehensive and scalable framework for incident assignment and prioritization in Security Operations Centers (SOCs). The proposed model aims to optimize SOC workflows by addressing key operational challenges such as analyst fatigue, alert overload, and inconsistent incident handling. Our framework evaluates each incident using a multi-factor scoring model that incorporates incident severity, service-level agreement (SLA) urgency, incident type, asset criticality, threat intelligence indicators, frequency of repetition, and a correlation score derived from historical incident data. We formalize this evaluation through a set of mathematical functions that compute a dynamic incident score and derive incident complexity. In parallel, analyst profiles are quantified using Analyst Load Factor (ALF) and Experience Match Factor (EMF), two novel metrics that account for both workload distribution and expertise alignment. The incident–analyst matching process is expressed as a constrained optimization problem, where the final assignment score is computed by balancing incident priority with analyst suitability. This formulation enables automated, real-time assignment of incidents to the most appropriate analysts, while ensuring both operational fairness and triage precision. The model is validated using algorithmic pseudocode, scoring tables, and a simplified case study, which illustrates the real-world applicability and decision logic of the framework in large-scale SOC environments. To validate the framework under real-world conditions, an empirical case study was conducted using 10 attack scenarios from the CICIDS2017 benchmark dataset. Overall, our contributions lie in the formalization of a dual-factor analyst scoring scheme and the integration of contextual incident features into an adaptive, rule-based assignment framework. To further strengthen operational value, future work will explore adaptive weighting mechanisms and integration with real-time SIEM pipelines. Additionally, feedback loops and supervised learning models will be incorporated to continuously refine analyst-incident matching and prioritization.
Incident management Analyst assignment SOC optimization Incident prioritization Correlation score SLA urgency
| Primary Language | English |
|---|---|
| Subjects | Information Security Management, Information Systems Organisation and Management |
| Journal Section | Research Article |
| Authors | |
| Submission Date | May 6, 2025 |
| Acceptance Date | June 16, 2025 |
| Early Pub Date | July 9, 2025 |
| Publication Date | July 15, 2025 |
| Published in Issue | Year 2025 Volume: 8 Issue: 4 |