Research Article
BibTex RIS Cite

Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi

Year 2026, Volume: 9 Issue: 1, 218 - 225, 15.01.2026
https://doi.org/10.34248/bsengineering.1782683
https://izlik.org/JA47AK97PB

Abstract

Bu çalışmanın amacı, aspir (Carthamus tinctorius L.) bitkisinin yaprak, çiçek ve tohum ekstraktları kullanılarak gümüş nanoparçacıkların (AgNP) sentezlenmesi ve bu nanoparçacıkların antimikrobiyal aktivitelerinin değerlendirilmesidir. Bu kapsamda bitki ekstraktları indirgeme ve kaplama ajanı olarak kullanılmış; sentezlenen AgNP’ler UV–Vis spektroskopisi, SEM-EDX ve FTIR analizleri ile karakterize edilmiştir. Ayrıca çiçek ekstraktının kimyasal bileşimi GC-MS ile belirlenmiştir. AgNP’lerin antimikrobiyal aktivitesi disk difüzyon yöntemi kullanılarak Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Saccharomyces cerevisiae ve Candida albicans üzerinde test edilmiştir. Bulgular, en yüksek sentez veriminin ve en düzenli nanopartikül morfolojisinin çiçek ekstraktı ile elde edildiğini ve ortalama boyutu 40 nm olan AgNP’lerin oluştuğunu göstermiştir. Çiçek ekstraktıyla sentezlenen AgNP’ lerin özellikle B. subtilis, P. aeruginosa ve E. coli suşlarında en geniş inhibisyon zonlarını oluşturduğu belirlenmiştir, mantar türlerinde ise inhibisyon gözlenmemiştir. Genel olarak, aspir çiçeği kaynaklı AgNP’lerin potansiyel antimikrobiyal ajanlar olarak değerlendirilebileceği sonucuna varılmıştır.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Supporting Institution

Malatya Turgut Özal Üniversitesi

Project Number

2022/05

Thanks

Bu çalışma Malatya Turgut Özal Üniversitesi Bilimsel Araştırma ve Proje Koordinasyon Birimi tarafından 2022/05 no’ lu araştırma projesi ile desteklenmiştir.

References

  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016a). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007
  • Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016b). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7. https://doi.org/10.1016/j.jrras.2015.02.007
  • Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80(3), 434–439. https://doi.org/10.1111/j.1747-0285.2012.01324.x
  • Ashri, A., Zimmer, E., Urie, L., & Ghaner, A. (1974). Evaluation of the world collection of safflower for yield components and their relationship. Crop Science, 14(6), 799–802. https://doi.org/10.2135/cropsci1974.0011183X001400060006x
  • Babaoğlu, M. (2007). Aspir bitkisi ve tarımı(Bilgi broşürü). Trakya Tarımsal Araştırma Enstitüsü.
  • Baydar, H. (2016). Tıbbi ve aromatik bitkiler bilimi ve teknolojisi (Güncellenmiş baskı). SDÜ Yayınları.
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564
  • Cushnie, T. P. T.,& Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38(2), 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
  • Dajue, L.,& Mündel, H. H. (1996). *Safflower (*Carthamus tinctorius L.). International Plant Genetic Resources Institute (IPGRI).
  • Er, C. (1981). Endüstri bitkilerini nadas alanlarına sokabilme olanakları. İçinde Kuru Tarım Bölgelerinde Nadas Alanlarından Yararlanma Sempozyumu(ss. 55-58). TÜBİTAK-TOAG.
  • Esendal, E., Arslan, B., & Paşa, C. (2008). Effect of winter and spring sowing on yield and plant traits of safflower (Carthamus tinctorius L.). İçinde International Conference Proceedings on Oil Crops(ss. 68).
  • Gilbert, J. (2008). International safflower production – An overview. İçinde 7th International Safflower Conference(ss. 78).
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/C1GC15386B
  • Kaviya, S., Santhanalakshmi, J., & Viswanathan, B. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3–4), 594–598. https://doi.org/10.1016/j.saa.2011.03.040
  • Kaya, M. D., İpek, A., Uranbey, S., & Kolsarıcı, Ö. (2004). Aspir (Carthamus tinctorius L.)’e uygulanan ethephon’un verim ve verim öğelerine etkileri. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 10(2), 182–186.
  • Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7(6), 1131–1139. https://doi.org/10.1016/j.arabjc.2010.11.011
  • Kim, K. J., Sung, W. S., Moon, S. K., Choi, J. S., Kim, J. G., & Lee, D. G. (2007). Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology, 18(8), 1482–1484.
  • Konar, V., Aşkın, Y., & Türkoğlu, İ. (2010). Yabani aspir (Carthamus persicus Willd.) bitkisinin yağ asidi bileşiminin incelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi, 22(1), 29–36.
  • Kourkoutas, Y., & Chorianopoulos, N. (Eds.). (2018). Special issue: Novel natural products for drug discovery. BioMed Research International, 2018, Article ID 9875123. https://doi.org/10.1155/2018/9875123
  • Kumari, S. C., Dhand, V., & Padma, P. N. (2021). Green synthesis of metallic nanoparticles: A review. Nanomaterials, 11(2), 259. https://doi.org/10.3390/nano11020259
  • López, S., Bermúdez, B., Montserrat-de la Paz, S., Cardelo, M. P., Osorio, P., & Muriana, F. J. (2014). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched oils. Nutrients, 6(11), 4769–4782. https://doi.org/10.3390/nu6114769
  • Milshteyn, A., Colosimo, D. A., & Brady, S. F. (2018). Accessing bioactive natural products from the human microbiome. Cell Host & Microbe, 23(6), 725–736. https://doi.org/10.1016/j.chom.2018.05.013
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  • Oğuz, F., & Oğuz, M. N. (2006). Aspir ve hayvan beslemede kullanımı. Yem Magazin, 14(45), 29–33.
  • Owaid, M. N. (2019). Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environmental Nanotechnology, Monitoring & Management, 12, 100256. https://doi.org/10.1016/j.enmm.2019.10025
  • Rajeshkumar, S.,& Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219–227. https://doi.org/10.1016/j.cbi.2017.06.019
  • Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold nanoparticle synthesis—A prospective review on drug delivery. OpenNano, 2, 37–46. https://doi.org/10.1016/j.onano.2017.07.001
  • Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., & Naseem, S. (2016). Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials, 6(4), 71. https://doi.org/10.3390/nano6040071
  • Shams, G., Ranjbar, M., & Amiri, A. (2013). Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L.). Journal of Nanoparticle Research, 15(1), 1630. https://doi.org/10.1007/s11051-013-1630-1
  • Sharmila, G., Fathima, M. F., Haries, S., Geetha, S., Kumar, N. M., & Muthukumaran, C. (2017). Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. Journal of Molecular Structure, 1138, 35–40. https://doi.org/10.1016/j.molstruc.2017.02.068
  • Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2018). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599. https://doi.org/10.1016/j.tibtech.2016.12.006
  • Taşlıgil, N.,& Şahin, G. (2016). Stratejik önemi artan bir endüstri bitkisi: Aspir (Carthamus tinctorius L.) ve Türkiye’deki coğrafi dağılımı. Türk Coğrafya Dergisi, 67, 91–100.
  • Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., & Maruthupandy, M. (2019). Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. Journal of Photochemistry and Photobiology B: Biology, 192, 74–82. https://doi.org/10.1016/j.jphotobiol.2019.01.017
  • Weiss, E. A. (2000). Oilseed crops. Blackwell Science Ltd.
  • Yılmaz, C., & Gökmen, V. (2020). Phenolic compounds in food: Chemistry and antioxidant properties. Current Opinion in Food Science, 32, 126–132. https://doi.org/10.1016/j.cofs.2020.03.009

Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles with Safflower (Carthamus tinctorius L.)

Year 2026, Volume: 9 Issue: 1, 218 - 225, 15.01.2026
https://doi.org/10.34248/bsengineering.1782683
https://izlik.org/JA47AK97PB

Abstract

The aim of this study was to synthesize silver nanoparticles (AgNPs) using the leaf, flower, and seed extracts of safflower (Carthamus tinctorius L.) and to evaluate their antimicrobial activities. For this purpose, plant extracts were used as reducing and stabilizing agents, and the synthesized AgNPs were characterized by UV–Vis spectroscopy, SEM-EDX, and FTIR analyses. In addition, the chemical composition of the flower extract was determined by GC-MS. The antimicrobial activity of the AgNPs was tested against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Candida albicans using the disk diffusion method. The results showed that the highest synthesis efficiency and the most regular nanoparticle morphology were demonstrate from the flower extract, producing AgNPs with an average size of approximately 40 nm. It has been determined that AgNPs synthesized with flower extract form the widest inhibition zones, particularly in B. subtilis, P. aeruginosa, and E. coli strains, while no inhibition was observed in fungal species. Overall, it has been concluded that AgNPs derived from cornflowers can be considered as potential antimicrobial agents.

Ethical Statement

As no studies were conducted on animals or humans in this research, no ethical committee approval was obtained.

Supporting Institution

Malatya Turgut Ozal University

Project Number

2022/05

Thanks

This study was supported by Malatya Turgut Özal University Scientific Research and Project Coordination Unit under research project no. 2022/05.

References

  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016a). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007
  • Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016b). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7. https://doi.org/10.1016/j.jrras.2015.02.007
  • Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80(3), 434–439. https://doi.org/10.1111/j.1747-0285.2012.01324.x
  • Ashri, A., Zimmer, E., Urie, L., & Ghaner, A. (1974). Evaluation of the world collection of safflower for yield components and their relationship. Crop Science, 14(6), 799–802. https://doi.org/10.2135/cropsci1974.0011183X001400060006x
  • Babaoğlu, M. (2007). Aspir bitkisi ve tarımı(Bilgi broşürü). Trakya Tarımsal Araştırma Enstitüsü.
  • Baydar, H. (2016). Tıbbi ve aromatik bitkiler bilimi ve teknolojisi (Güncellenmiş baskı). SDÜ Yayınları.
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564
  • Cushnie, T. P. T.,& Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38(2), 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
  • Dajue, L.,& Mündel, H. H. (1996). *Safflower (*Carthamus tinctorius L.). International Plant Genetic Resources Institute (IPGRI).
  • Er, C. (1981). Endüstri bitkilerini nadas alanlarına sokabilme olanakları. İçinde Kuru Tarım Bölgelerinde Nadas Alanlarından Yararlanma Sempozyumu(ss. 55-58). TÜBİTAK-TOAG.
  • Esendal, E., Arslan, B., & Paşa, C. (2008). Effect of winter and spring sowing on yield and plant traits of safflower (Carthamus tinctorius L.). İçinde International Conference Proceedings on Oil Crops(ss. 68).
  • Gilbert, J. (2008). International safflower production – An overview. İçinde 7th International Safflower Conference(ss. 78).
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/C1GC15386B
  • Kaviya, S., Santhanalakshmi, J., & Viswanathan, B. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3–4), 594–598. https://doi.org/10.1016/j.saa.2011.03.040
  • Kaya, M. D., İpek, A., Uranbey, S., & Kolsarıcı, Ö. (2004). Aspir (Carthamus tinctorius L.)’e uygulanan ethephon’un verim ve verim öğelerine etkileri. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 10(2), 182–186.
  • Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7(6), 1131–1139. https://doi.org/10.1016/j.arabjc.2010.11.011
  • Kim, K. J., Sung, W. S., Moon, S. K., Choi, J. S., Kim, J. G., & Lee, D. G. (2007). Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology, 18(8), 1482–1484.
  • Konar, V., Aşkın, Y., & Türkoğlu, İ. (2010). Yabani aspir (Carthamus persicus Willd.) bitkisinin yağ asidi bileşiminin incelenmesi. Fırat Üniversitesi Fen Bilimleri Dergisi, 22(1), 29–36.
  • Kourkoutas, Y., & Chorianopoulos, N. (Eds.). (2018). Special issue: Novel natural products for drug discovery. BioMed Research International, 2018, Article ID 9875123. https://doi.org/10.1155/2018/9875123
  • Kumari, S. C., Dhand, V., & Padma, P. N. (2021). Green synthesis of metallic nanoparticles: A review. Nanomaterials, 11(2), 259. https://doi.org/10.3390/nano11020259
  • López, S., Bermúdez, B., Montserrat-de la Paz, S., Cardelo, M. P., Osorio, P., & Muriana, F. J. (2014). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched oils. Nutrients, 6(11), 4769–4782. https://doi.org/10.3390/nu6114769
  • Milshteyn, A., Colosimo, D. A., & Brady, S. F. (2018). Accessing bioactive natural products from the human microbiome. Cell Host & Microbe, 23(6), 725–736. https://doi.org/10.1016/j.chom.2018.05.013
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  • Oğuz, F., & Oğuz, M. N. (2006). Aspir ve hayvan beslemede kullanımı. Yem Magazin, 14(45), 29–33.
  • Owaid, M. N. (2019). Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environmental Nanotechnology, Monitoring & Management, 12, 100256. https://doi.org/10.1016/j.enmm.2019.10025
  • Rajeshkumar, S.,& Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219–227. https://doi.org/10.1016/j.cbi.2017.06.019
  • Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold nanoparticle synthesis—A prospective review on drug delivery. OpenNano, 2, 37–46. https://doi.org/10.1016/j.onano.2017.07.001
  • Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., & Naseem, S. (2016). Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials, 6(4), 71. https://doi.org/10.3390/nano6040071
  • Shams, G., Ranjbar, M., & Amiri, A. (2013). Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L.). Journal of Nanoparticle Research, 15(1), 1630. https://doi.org/10.1007/s11051-013-1630-1
  • Sharmila, G., Fathima, M. F., Haries, S., Geetha, S., Kumar, N. M., & Muthukumaran, C. (2017). Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. Journal of Molecular Structure, 1138, 35–40. https://doi.org/10.1016/j.molstruc.2017.02.068
  • Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2018). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599. https://doi.org/10.1016/j.tibtech.2016.12.006
  • Taşlıgil, N.,& Şahin, G. (2016). Stratejik önemi artan bir endüstri bitkisi: Aspir (Carthamus tinctorius L.) ve Türkiye’deki coğrafi dağılımı. Türk Coğrafya Dergisi, 67, 91–100.
  • Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., & Maruthupandy, M. (2019). Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. Journal of Photochemistry and Photobiology B: Biology, 192, 74–82. https://doi.org/10.1016/j.jphotobiol.2019.01.017
  • Weiss, E. A. (2000). Oilseed crops. Blackwell Science Ltd.
  • Yılmaz, C., & Gökmen, V. (2020). Phenolic compounds in food: Chemistry and antioxidant properties. Current Opinion in Food Science, 32, 126–132. https://doi.org/10.1016/j.cofs.2020.03.009
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Plant Biotechnology
Journal Section Research Article
Authors

Elif Özbey 0000-0001-7215-1922

Gülçin Beker Akbulut 0000-0003-3529-5999

Gülşah Yıl 0000-0001-5124-7239

Ülkü Yılmaz 0000-0002-2806-4781

Dilek Asma 0000-0002-3866-3016

Project Number 2022/05
Submission Date September 12, 2025
Acceptance Date December 6, 2025
Early Pub Date December 7, 2025
Publication Date January 15, 2026
DOI https://doi.org/10.34248/bsengineering.1782683
IZ https://izlik.org/JA47AK97PB
Published in Issue Year 2026 Volume: 9 Issue: 1

Cite

APA Özbey, E., Beker Akbulut, G., Yıl, G., Yılmaz, Ü., & Asma, D. (2026). Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi. Black Sea Journal of Engineering and Science, 9(1), 218-225. https://doi.org/10.34248/bsengineering.1782683
AMA 1.Özbey E, Beker Akbulut G, Yıl G, Yılmaz Ü, Asma D. Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi. BSJ Eng. Sci. 2026;9(1):218-225. doi:10.34248/bsengineering.1782683
Chicago Özbey, Elif, Gülçin Beker Akbulut, Gülşah Yıl, Ülkü Yılmaz, and Dilek Asma. 2026. “Aspir (Carthamus Tinctorius L.) Ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitesi”. Black Sea Journal of Engineering and Science 9 (1): 218-25. https://doi.org/10.34248/bsengineering.1782683.
EndNote Özbey E, Beker Akbulut G, Yıl G, Yılmaz Ü, Asma D (January 1, 2026) Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi. Black Sea Journal of Engineering and Science 9 1 218–225.
IEEE [1]E. Özbey, G. Beker Akbulut, G. Yıl, Ü. Yılmaz, and D. Asma, “Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi”, BSJ Eng. Sci., vol. 9, no. 1, pp. 218–225, Jan. 2026, doi: 10.34248/bsengineering.1782683.
ISNAD Özbey, Elif - Beker Akbulut, Gülçin - Yıl, Gülşah - Yılmaz, Ülkü - Asma, Dilek. “Aspir (Carthamus Tinctorius L.) Ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitesi”. Black Sea Journal of Engineering and Science 9/1 (January 1, 2026): 218-225. https://doi.org/10.34248/bsengineering.1782683.
JAMA 1.Özbey E, Beker Akbulut G, Yıl G, Yılmaz Ü, Asma D. Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi. BSJ Eng. Sci. 2026;9:218–225.
MLA Özbey, Elif, et al. “Aspir (Carthamus Tinctorius L.) Ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu Ve Antimikrobiyal Aktivitesi”. Black Sea Journal of Engineering and Science, vol. 9, no. 1, Jan. 2026, pp. 218-25, doi:10.34248/bsengineering.1782683.
Vancouver 1.Özbey E, Beker Akbulut G, Yıl G, Yılmaz Ü, Asma D. Aspir (Carthamus tinctorius L.) ile Gümüş Nanoparçacıkların Yeşil Sentezi, Karakterizasyonu ve Antimikrobiyal Aktivitesi. BSJ Eng. Sci. [Internet]. 2026 Jan. 1;9(1):218-25. Available from: https://izlik.org/JA47AK97PB

                            24890