Research Article
BibTex RIS Cite

Automatic Modulation Recognition using ResNet Architecture

Year 2025, Issue: Advanced Online Publication, 17 - 18
https://doi.org/10.34248/bsengineering.1783964

Abstract

This work focuses on the application of deep learning models for the classification and identification of signals modulated using both analog and digital modulation techniques. The paper aims to explore the potential of advanced neural networks in accurately distinguishing between various modulation schemes, which play a critical role in modern communication systems. By leveraging large datasets and employing robust machine learning frameworks, the study evaluates the performance of these models in terms of accuracy, efficiency, and reliability under different signal-to-noise ratio (SNR) conditions. Furthermore, the paper provides a comparative analysis of the models, highlighting their strengths and limitations in handling diverse modulation types. The results of this work contribute to the development of intelligent communication systems capable of adapting to dynamic environments, ensuring robust and efficient signal processing.

Ethical Statement

Ethics committee approval was not required for this study because there was no study on animals or humans.

Supporting Institution

None

Project Number

N/A

Thanks

We would like to thank the editor for handling the review process of our manuscript.

References

  • Al-Nuaimi, D. H., Hashim, I. A., Zainal Abidin, I. S., Salman, L. B., & Mat Isa, N. A. (2019). Performance of feature-based techniques for automatic digital modulation recognition and classification: A review. Electronics, 8(12), 1407.
  • Azzouz, E. E., & Nandi, A. K. (1996). Automatic modulation recognition of communication signals, Springer USA. https://doi.org/10.1007/978-1-4757-2469-1

Automatic Modulation Recognition using ResNet Architecture

Year 2025, Issue: Advanced Online Publication, 17 - 18
https://doi.org/10.34248/bsengineering.1783964

Abstract

Bu çalışma, analog ve dijital modülasyon teknikleriyle modüle edilmiş sinyallerin sınıflandırılması ve tanımlanması için derin öğrenme modellerinin uygulanmasına odaklanmaktadır. Makale, modern haberleşme sistemlerinde kritik bir rol oynayan farklı modülasyon şemalarının doğru bir şekilde ayırt edilmesinde gelişmiş sinir ağlarının potansiyelini keşfetmeyi amaçlamaktadır. Büyük veri setlerinden yararlanılarak ve güçlü makine öğrenimi altyapıları kullanılarak, bu modellerin farklı sinyal-gürültü oranı (SNR) koşullarında doğruluk, verimlilik ve güvenilirlik açısından performansı değerlendirilmektedir. Ayrıca, makale modellerin karşılaştırmalı bir analizini sunarak, farklı modülasyon türlerini ele almadaki güçlü ve zayıf yönlerini ortaya koymaktadır. Bu araştırmanın bulguları, dinamik ortamlara uyum sağlayabilen, sağlam ve verimli sinyal işleme sağlayan akıllı haberleşme sistemlerinin geliştirilmesine katkıda bulunmaktadır.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Supporting Institution

Mevcut değil.

Project Number

N/A

Thanks

Makalemizin değerlendirme sürecini yürütmesinden ötürü editöre teşekkür ederiz.

References

  • Al-Nuaimi, D. H., Hashim, I. A., Zainal Abidin, I. S., Salman, L. B., & Mat Isa, N. A. (2019). Performance of feature-based techniques for automatic digital modulation recognition and classification: A review. Electronics, 8(12), 1407.
  • Azzouz, E. E., & Nandi, A. K. (1996). Automatic modulation recognition of communication signals, Springer USA. https://doi.org/10.1007/978-1-4757-2469-1
There are 2 citations in total.

Details

Primary Language English
Subjects Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section Research Article
Authors

Bedirhan Şendur 0009-0004-5607-6159

Mümtaz Yılmaz 0000-0002-1121-7331

Project Number N/A
Submission Date September 14, 2025
Acceptance Date October 22, 2025
Early Pub Date December 4, 2025
Published in Issue Year 2025 Issue: Advanced Online Publication

Cite

APA Şendur, B., & Yılmaz, M. (2025). Automatic Modulation Recognition using ResNet Architecture. Black Sea Journal of Engineering and Science(Advanced Online Publication), 17-18. https://doi.org/10.34248/bsengineering.1783964
AMA Şendur B, Yılmaz M. Automatic Modulation Recognition using ResNet Architecture. BSJ Eng. Sci. December 2025;(Advanced Online Publication):17-18. doi:10.34248/bsengineering.1783964
Chicago Şendur, Bedirhan, and Mümtaz Yılmaz. “Automatic Modulation Recognition Using ResNet Architecture”. Black Sea Journal of Engineering and Science, no. Advanced Online Publication (December 2025): 17-18. https://doi.org/10.34248/bsengineering.1783964.
EndNote Şendur B, Yılmaz M (December 1, 2025) Automatic Modulation Recognition using ResNet Architecture. Black Sea Journal of Engineering and Science Advanced Online Publication 17–18.
IEEE B. Şendur and M. Yılmaz, “Automatic Modulation Recognition using ResNet Architecture”, BSJ Eng. Sci., no. Advanced Online Publication, pp. 17–18, December2025, doi: 10.34248/bsengineering.1783964.
ISNAD Şendur, Bedirhan - Yılmaz, Mümtaz. “Automatic Modulation Recognition Using ResNet Architecture”. Black Sea Journal of Engineering and Science Advanced Online Publication (December2025), 17-18. https://doi.org/10.34248/bsengineering.1783964.
JAMA Şendur B, Yılmaz M. Automatic Modulation Recognition using ResNet Architecture. BSJ Eng. Sci. 2025;:17–18.
MLA Şendur, Bedirhan and Mümtaz Yılmaz. “Automatic Modulation Recognition Using ResNet Architecture”. Black Sea Journal of Engineering and Science, no. Advanced Online Publication, 2025, pp. 17-18, doi:10.34248/bsengineering.1783964.
Vancouver Şendur B, Yılmaz M. Automatic Modulation Recognition using ResNet Architecture. BSJ Eng. Sci. 2025(Advanced Online Publication):17-8.

                            24890