Research Article
BibTex RIS Cite

Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate

Year 2026, Volume: 9 Issue: 1, 206 - 217, 15.01.2026
https://doi.org/10.34248/bsengineering.1790069

Abstract

In this study, the material composition and coloration strategies of the three moriage enamel colors (white, black, and orange) on a Japanese Dragonware plate were elucidated through a multi-technique approach. X-ray fluorescence (XRF) was employed to determine the bulk-averaged chemistry. Energy-dispersive spectroscopy (EDS) point analysis was performed to assess microscale compositions and elemental distributions. Fourier-transform infrared spectroscopy (FT-IR) was used to evaluate the polymerization/depolymerization behavior of the silicate glass network, and Raman spectroscopy was applied to fingerprint the pigment phases. It was demonstrated that the enamels were produced with color-specific formulations. In DW-W (white), a Pb and alkali-rich, low-melting, and fluid Pb-alkali silicate binder was identified. In DW-B (black), a more depolymerized network was identified, attributed to the dilution of the glass phase by the pigment, and this assessment was supported by the presence of a carbon-based pigment, as verified by Raman and EDS results. In DW-O (orange), an Al-rich feldspathic framework together with hematite (α-Fe2O3), signatures were observed. Differences in the position and bandwidth of the ~900-1100 cm-1 asymmetric Si-O band in FT-IR, together with the D1/D2 ring modes in Raman, were found to indicate different degrees of network polymerization among the colors. Across the Raman and FT-IR analyses, the absence of crystalline quartz fingerprints together with the presence of broad glass bands was taken to confirm that the enamels were embedded within an amorphous glass matrix. These results were considered to evidence an overglaze technology involving low-temperature, multi-step firing and color-specific recipes. The findings are proposed as a scalable analytical template for classification and conservation strategies in multilayer decorative systems such as moriage-enameled Dragonware.

Ethical Statement

Ethics committee approval was not required for this study because of there was no study on animals or humans.

Thanks

The author sincerely thanks Prof. Dr. Ahmet KOLUMAN for the generous donation of the Dragonware plate from his collection for this study, and Dr. Ahmet ERDEM for his contributions to the FT-IR analyses.

References

  • Anonymous. (2024). Moriage technique. International Nippon Collectors Club. Retrieved September 17, 2025, from https://nipponcollectorsclub.com/nippon-techniques/moriage
  • Anonymous. (2025). Itchin-gaki. Kogeistandard. Retrieved September 17, 2025, from https://www.kogeistandard.com/resource/itchin
  • Bell, I. M., Clark, R. J., & Gibbs, P. J. (1997). Raman spectroscopic library of natural and synthetic pigments (pre-≈1850 AD). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53(12), 2159–2179.
  • Beltrán, M., Schibille, N., Brock, F., Gratuze, B., Vallcorba, O., & Pradell, T. (2020). Modernist enamels: Composition, microstructure and stability. Journal of the European Ceramic Society, 40(4), 1753–1766.
  • Bengtsson, F., Pehlivan, I. B., Österlund, L., & Karlsson, S. (2022). Alkali ion diffusion and structure of chemically strengthened TiO₂ doped soda-lime silicate glass. Journal of Non-Crystalline Solids, 586, 121564.
  • Bezur, A., & Casadio, F. (2013). The analysis of porcelain using handheld and portable X-ray fluorescence spectrometers. In Handheld XRF for art and archaeology (pp. 249–312).
  • Boon, J. J., & Asahina, S. (2006). Surface preparation of cross sections of traditional and modern paint using the Argon ion milling polishing CP system. Microscopy and Microanalysis, 12(S02), 1322–1323.
  • Colomban, P. (2004). Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Applied Physics A, 79(2), 167–170.
  • Colomban, P. (2022a). Full spectral range Raman signatures related to changes in enameling technologies from the 18th to the 20th century: Guidelines, effectiveness and limitations of the Raman analysis. Materials, 15(9), 3158.
  • Colomban, P., Gallet, X., Simsek Franci, G., Fournery, N., & Quette, B. (2024). Non-invasive Raman classification comparison with pXRF of monochrome and related Qing porcelains: Lead-rich-, lead-poor-, and alkali-based glazes. Materials, 17(14), 3566.
  • Colomban, P., Gironda, M., Simsek Franci, G., & d’Abrigeon, P. (2022). Distinguishing genuine Imperial Qing dynasty porcelain from ancient replicas by on-site non-invasive XRF and Raman spectroscopy. Materials, 15(16), 5747.
  • Colomban, P., Maggetti, M., & d’Albis, A. (2018). Non-invasive Raman identification of crystalline and glassy phases in a 1781 Sèvres Royal Factory soft paste porcelain plate. Journal of the European Ceramic Society, 38(15), 5228–5233.
  • Colomban, P., Ngo, A. T., & Fournery, N. (2022b). Non-invasive Raman analysis of 18th century Chinese export/armorial overglazed porcelain: Identification of the different enameling techniques. Heritage, 5(1), 233–259.
  • Colomban, P., Tournie, A., & Bellot-Gurlet, L. (2006). Raman identification of glassy silicates used in ceramics, glass and jewellery: A tentative differentiation guide. Journal of Raman Spectroscopy, 37(8), 841–852.
  • Coman, S. (2021). Meiji period, an introduction. Smarthistory. Retrieved November 19, 2025, from https://smarthistory.org/meiji-period/
  • Dal Poggetto, G., D’Angelo, A., Blanco, I., Piccolella, S., Leonelli, C., & Catauro, M. (2021). FT-IR study, thermal analysis, and evaluation of the antibacterial activity of a MK-geopolymer mortar using glass waste as fine aggregate. Polymers, 13(17), 2970.
  • Dalby, K. N., & King, P. L. (2006). A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-transform infrared spectroscopy. American Mineralogist, 91(11–12), 1783–1793.
  • Davila, L. P., Risbud, S. H., & Shackelford, J. F. (2008). Quartz and silicas. In J. F. Shackelford & R. H. Doremus (Eds.), Ceramic and glass materials: Structure, properties and processing (pp. 78–79). Springer.
  • de Faria, D. L. A., Venâncio Silva, S., & de Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28(11), 873–878.
  • De Sousa Meneses, D., Malki, M., & Echegut, P. (2006). Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. Journal of Non-Crystalline Solids, 352(8), 769–776.
  • Domoney, K., Shortland, A. J., & Kuhn, S. (2011). Characterization of 18th-century Meissen porcelain using SEM–EDS. Archaeometry, 54(3), 454–474.
  • Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20), 14095.
  • Gerbig, Y. B., & Michaels, C. A. (2020). In-situ Raman spectroscopic measurements of the deformation region in indented glasses. Journal of Non-Crystalline Solids, 530, 119828.
  • Giannossa, L. C., Forleo, T., & Mangone, A. (2021). The distinctive role of chemical composition in archaeometry: The case of Apulian red figure pottery. Applied Sciences, 11(7), 3073.
  • Hall, M. E. (2017). X-ray fluorescence-energy dispersive (ED-XRF) and wavelength dispersive (WD-XRF) spectrometry. In A. M. W. Hunt (Ed.), The Oxford handbook of archaeological ceramic analysis (p. 342). Oxford University Press.
  • Hashimoto, H., Higuchi, K., Inada, H., Okazaki, Y., Takaishi, T., & Asoh, H. (2016a). Well-dispersed α-Fe₂O₃ particles for lead-free red overglaze enamels through hydrothermal treatment. ACS Omega, 1(1), 9–13.
  • Hashimoto, H., Inada, H., Okazaki, Y., Takaishi, T., Fujii, T., Takada, J., & Asoh, H. (2016b). Controlling the color of lead-free red overglaze enamels and a process for preparing high-quality red paints. ACS Applied Materials & Interfaces, 8(17), 10918–10928.
  • Hunt, A. M. W., & Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 53, 626–638.
  • Inada, H., Okazaki, Y., Yokoyama, T., Takaishi, T., Fujii, T., Takada, J., Asoh, H., & Hashimoto, H. (2018). Interaction between lead-free multicomponent alkali borosilicate glass frits and hematite in red overglaze enamels. Journal of the American Ceramic Society, 101(10), 4538–4548.
  • Innocenzi, P. (2003). Infrared spectroscopy of sol–gel-derived silica-based films: A spectra-microstructure overview. Journal of Non-Crystalline Solids, 316, 309–319.
  • Jiusti, J., Zanotto, E. D., Feller, S. A., Austin, H. J., Detar, H. M., Bishop, I., Manzani, D., Nakatsuka, Y., Watanabe, Y., & Inoue, H. (2020). Effect of network formers and modifiers on the crystallization resistance of oxide glasses. Journal of Non-Crystalline Solids, 550, 120359.
  • Li, M., Dong, C., Ma, Y., & Jiang, H. (2023). Light-transmitting lithium aluminosilicate glass-ceramics with excellent mechanical properties based on cluster model design. Nanomaterials, 13(3), 530.
  • Li, Y., Liu, P., Luo, Y., Ge, M, Xing, H., & Li, Y. (2024). Corrosion mechanisms for lead-glazed pottery from Qibi Ming Tomb of the Tang Dynasty in Xianyang, China. Heritage Science, 12, 224.
  • Liu, G. L., & Kazarian, S. G. (2022). Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst, 147(9), 1777–1797.
  • Liu, H., Hahn, S. H., Ren, M., Thiruvillamalai, M., Gross, T. M., Du, J., van Duin, A. C. T., & Kim, S. H. (2020). Searching for correlations between vibrational spectral features and structural parameters of silicate glass network. Journal of the American Ceramic Society, 103(6), 3575–3589.
  • Liu, H., Kaya, H., Lin, Y. T., Ogrinc, A., & Kim, S. H. (2021). Vibrational spectroscopy analysis of silica and silicate glass networks. Journal of the American Ceramic Society, 105(4), 2355–2384.
  • McMillan, P. (1984). Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy. American Mineralogist, 69(7–8), 622–644.
  • Mihailova, I., Harizanova, R., Tasheva, T., Dimova, N., & Rüssel, C. (2023). Physicochemical and structural characterization of silicate glasses containing iron oxides. Journal of Chemical Technology and Metallurgy, 58(1), 3–7.
  • Mommsen, H., Beier, T., Diehl, U., & Podzuweit, C. (1992). Provenance determination of Mycenaean sherds found in Tell el Amarna by neutron activation analysis. Journal of Archaeological Science, 19(3), 295–302.
  • Moropoulou, A., Zendri, E., Ortiz, P., Delegou, E. T., Ntoutsi, I., Balliana, E., Becerra, J., & Ortiz, R. (2019). Scanning microscopy techniques as an assessment tool of materials and interventions for the protection of built cultural heritage. Scanning, 2019, 5376214.
  • Nilsson, J. E. (2023). Dragonware. Gotheborg. Retrieved September 17, 2025, from https://www.gotheborg.com/glossary/dragonware.shtml
  • Nilsson, J. E. (2023). Moriage (piling-up). Gotheborg. Retrieved September 17, 2025, from https://www.gotheborg.com/glossary/moriage.shtml
  • Ostroumov, M., Faulques, E., & Lounejeva, E. (2002). Raman spectroscopy of natural silica in Chicxulub impactite, Mexico. Comptes Rendus Geoscience, 334(1), 21–26.
  • Öz, C., & Özer, Ö. (2019). Seramik arkeometrisi’nde spektroskopik yöntemlerin uygulanması ve yorumlanması: XRF, XRD. Seramik Araştırmaları Dergisi, 1, 136–153.
  • Papliaka, Z. E., Vaccari, L., Zanini, F., & Sotiropoulou, S. (2015). Improving FTIR imaging speciation of organic compound residues or their degradation products in wall painting samples using a new thin section preparation strategy based on cyclododecane pre-treatment. Analytical and Bioanalytical Chemistry, 407(18), 5393–5403.
  • Perna, M. G., Falcone, F., Casolino, C., Metalla, E., Rosatelli, G., Antonelli, S., & Stoppa, F. (2024). Analysing the glaze of a medieval ceramic fragment from the Durres amphitheater in Albania. Heritage Science, 12, 82.
  • Pięta, E., Olszewska-Świetlik, J., Paluszkiewicz, C., Zając, A., & Kwiatek, W. M. (2019). Application of ATR-FTIR mapping to identification and distribution of pigments, binders and degradation products in a 17th century painting. Vibrational Spectroscopy, 103, 102928.
  • Pięta, E., Proniewicz, E., Szmelter-Fausek, B., Olszewska-Świetlik, J., & Proniewicz, L. M. (2014). Micro-Raman spectroscopy analysis of the 17th century panel painting “Servilius Appius” by Isaac van den Blocke. Journal of Raman Spectroscopy, 45(11–12), 1019–1025.
  • Pradell, T., & Molera, J. (2020). Ceramic technology: How to characterise ceramic glazes. Archaeological and Anthropological Sciences, 12, 189.
  • Prati, S., Joseph, E., Sciutto, G., & Mazzeo, R. (2010). New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Accounts of Chemical Research, 43(6), 792–801.
  • Prati, S., Sciutto, G., Bonacini, I., & Mazzeo, R. (2016). New frontiers in application of FTIR microscopy for characterization of cultural heritage materials. Topics in Current Chemistry, 374, 26.
  • Qu, L., Zhang, X., Duan, H., Zhang, R., Li, G., & Lei, Y. (2017). The application of LIBS and other techniques on Chinese low temperature glaze. MRS Advances, 2(39), 2081–2094.
  • Ravindran, T., Arora, A. K., Ramya, S., Subba Rao, R., & Raj, B. (2011). Raman spectroscopic study of medieval Indian art of 17th century. Journal of Raman Spectroscopy, 42(4), 803–807.
  • Ricci, G. (2016). Archaeometric studies of historical ceramic materials (Doctoral dissertation). Universita Ca’ Foscari Venezia.
  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731–1742.
  • Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., & Bonanno, E. (2018). Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry, 62(1), 2841.
  • Serra, J., González, P., Liste, S., Serra, C., Chiussi, S., León, B., Pérez-Amor, M., Ylänen, H. O., & Hupa, M. (2003). FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids, 332, 20–27.
  • Sitarz, M. (2011). The structure of simple silicate glasses in the light of middle infrared spectroscopy studies. Journal of Non-Crystalline Solids, 357(6), 603–608.
  • Smith, G. D., & Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science, 31(8), 1137–1160.
  • Sparavigna, A. C. (2023). Raman spectroscopy of the iron oxides in the form of minerals, particles and nanoparticles. ChemRxiv. Retrieved September 24, 2025, from http://www.edpsciences.org/docinfos/INRARND
  • Szökefalvi‐Nagy, Z., Demeter, I., Kocsonya, A., & Kovács, I. (2004). Non-destructive XRF analysis of paintings. Nuclear Instruments and Methods in Physics Research Section B, 226, 53–59.
  • Taylor, W. (1990). Application of infrared spectroscopy to studies of silicate glass structure: Examples from the melilite glasses and the systems Na₂O-SiO₂ and Na₂O-Al₂O₃-SiO₂. Proceedings of the Indian Academy of Sciences, 99(1), 99–117.
  • Tite, M. S., Freestone, I., Mason, R., Molera, J., Vendrell‐Saz, M., & Wood, N. (1998). Lead glazes in antiquity—Methods of production and reasons for use. Archaeometry, 40(2), 241–260.
  • Turco, F., Davit, P., Cossio, R., Agostino, A., & Operti, L. (2017). Accuracy improvement by means of porosity assessment and standards optimization in SEM-EDS and XRF elemental analyses on archaeological and historical pottery and porcelain. Journal of Archaeological Science: Reports, 12, 54–65.
  • Veeramuthu, K., Sekar, S. C., & Saravanan, D. (2014). Characteristic analysis of archaeological pottery recently excavated from the site Mayiladumparai, Krishnagiri District, Tamil Nadu, India by analytical techniques. International Journal of Chemical Studies, 2(1), 64–68.
  • Weber, J., Beier, T., Diehl, U., Lambrecht, D., Mommsen, H., & Pantenburg, F. (1990). A PIXE mini-beam setup at the Bonn cyclotron for archeometric metal analyses. Nuclear Instruments and Methods in Physics Research Section B, 50(1–4), 221–225.
  • Willman, A. (2011). Edo-period Japanese porcelain. Heilbrunn Timeline of Art History. The Metropolitan Museum of Art. Retrieved November 19, 2025, from https://www.metmuseum.org/essays/edo-period-japanese-porcelain
  • Wu, J., & Stebbins, J. F. (2009). Effects of cation field strength on the structure of aluminoborosilicate glasses: High-resolution 11B, 27Al and 23Na MAS NMR. Journal of Non-Crystalline Solids, 355(9), 556–562.

Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate

Year 2026, Volume: 9 Issue: 1, 206 - 217, 15.01.2026
https://doi.org/10.34248/bsengineering.1790069

Abstract

In this study, the material composition and coloration strategies of the three moriage enamel colors (white, black, and orange) on a Japanese Dragonware plate were elucidated through a multi-technique approach. X-ray fluorescence (XRF) was employed to determine the bulk-averaged chemistry. Energy-dispersive spectroscopy (EDS) point analysis was performed to assess microscale compositions and elemental distributions. Fourier-transform infrared spectroscopy (FT-IR) was used to evaluate the polymerization/depolymerization behavior of the silicate glass network, and Raman spectroscopy was applied to fingerprint the pigment phases. It was demonstrated that the enamels were produced with color-specific formulations. In DW-W (white), a Pb and alkali-rich, low-melting, and fluid Pb-alkali silicate binder was identified. In DW-B (black), a more depolymerized network was identified, attributed to the dilution of the glass phase by the pigment, and this assessment was supported by the presence of a carbon-based pigment, as verified by Raman and EDS results. In DW-O (orange), an Al-rich feldspathic framework together with hematite (α-Fe2O3), signatures were observed. Differences in the position and bandwidth of the ~900-1100 cm-1 asymmetric Si-O band in FT-IR, together with the D1/D2 ring modes in Raman, were found to indicate different degrees of network polymerization among the colors. Across the Raman and FT-IR analyses, the absence of crystalline quartz fingerprints together with the presence of broad glass bands was taken to confirm that the enamels were embedded within an amorphous glass matrix. These results were considered to evidence an overglaze technology involving low-temperature, multi-step firing and color-specific recipes. The findings are proposed as a scalable analytical template for classification and conservation strategies in multilayer decorative systems such as moriage-enameled Dragonware.

Ethical Statement

Ethics committee approval was not required for this study because of there was no study on animals or humans.

Thanks

The author sincerely thanks Prof. Dr. Ahmet KOLUMAN for the generous donation of the Dragonware plate from his collection for this study, and Dr. Ahmet ERDEM for his contributions to the FT-IR analyses.

References

  • Anonymous. (2024). Moriage technique. International Nippon Collectors Club. Retrieved September 17, 2025, from https://nipponcollectorsclub.com/nippon-techniques/moriage
  • Anonymous. (2025). Itchin-gaki. Kogeistandard. Retrieved September 17, 2025, from https://www.kogeistandard.com/resource/itchin
  • Bell, I. M., Clark, R. J., & Gibbs, P. J. (1997). Raman spectroscopic library of natural and synthetic pigments (pre-≈1850 AD). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53(12), 2159–2179.
  • Beltrán, M., Schibille, N., Brock, F., Gratuze, B., Vallcorba, O., & Pradell, T. (2020). Modernist enamels: Composition, microstructure and stability. Journal of the European Ceramic Society, 40(4), 1753–1766.
  • Bengtsson, F., Pehlivan, I. B., Österlund, L., & Karlsson, S. (2022). Alkali ion diffusion and structure of chemically strengthened TiO₂ doped soda-lime silicate glass. Journal of Non-Crystalline Solids, 586, 121564.
  • Bezur, A., & Casadio, F. (2013). The analysis of porcelain using handheld and portable X-ray fluorescence spectrometers. In Handheld XRF for art and archaeology (pp. 249–312).
  • Boon, J. J., & Asahina, S. (2006). Surface preparation of cross sections of traditional and modern paint using the Argon ion milling polishing CP system. Microscopy and Microanalysis, 12(S02), 1322–1323.
  • Colomban, P. (2004). Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Applied Physics A, 79(2), 167–170.
  • Colomban, P. (2022a). Full spectral range Raman signatures related to changes in enameling technologies from the 18th to the 20th century: Guidelines, effectiveness and limitations of the Raman analysis. Materials, 15(9), 3158.
  • Colomban, P., Gallet, X., Simsek Franci, G., Fournery, N., & Quette, B. (2024). Non-invasive Raman classification comparison with pXRF of monochrome and related Qing porcelains: Lead-rich-, lead-poor-, and alkali-based glazes. Materials, 17(14), 3566.
  • Colomban, P., Gironda, M., Simsek Franci, G., & d’Abrigeon, P. (2022). Distinguishing genuine Imperial Qing dynasty porcelain from ancient replicas by on-site non-invasive XRF and Raman spectroscopy. Materials, 15(16), 5747.
  • Colomban, P., Maggetti, M., & d’Albis, A. (2018). Non-invasive Raman identification of crystalline and glassy phases in a 1781 Sèvres Royal Factory soft paste porcelain plate. Journal of the European Ceramic Society, 38(15), 5228–5233.
  • Colomban, P., Ngo, A. T., & Fournery, N. (2022b). Non-invasive Raman analysis of 18th century Chinese export/armorial overglazed porcelain: Identification of the different enameling techniques. Heritage, 5(1), 233–259.
  • Colomban, P., Tournie, A., & Bellot-Gurlet, L. (2006). Raman identification of glassy silicates used in ceramics, glass and jewellery: A tentative differentiation guide. Journal of Raman Spectroscopy, 37(8), 841–852.
  • Coman, S. (2021). Meiji period, an introduction. Smarthistory. Retrieved November 19, 2025, from https://smarthistory.org/meiji-period/
  • Dal Poggetto, G., D’Angelo, A., Blanco, I., Piccolella, S., Leonelli, C., & Catauro, M. (2021). FT-IR study, thermal analysis, and evaluation of the antibacterial activity of a MK-geopolymer mortar using glass waste as fine aggregate. Polymers, 13(17), 2970.
  • Dalby, K. N., & King, P. L. (2006). A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-transform infrared spectroscopy. American Mineralogist, 91(11–12), 1783–1793.
  • Davila, L. P., Risbud, S. H., & Shackelford, J. F. (2008). Quartz and silicas. In J. F. Shackelford & R. H. Doremus (Eds.), Ceramic and glass materials: Structure, properties and processing (pp. 78–79). Springer.
  • de Faria, D. L. A., Venâncio Silva, S., & de Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28(11), 873–878.
  • De Sousa Meneses, D., Malki, M., & Echegut, P. (2006). Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. Journal of Non-Crystalline Solids, 352(8), 769–776.
  • Domoney, K., Shortland, A. J., & Kuhn, S. (2011). Characterization of 18th-century Meissen porcelain using SEM–EDS. Archaeometry, 54(3), 454–474.
  • Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20), 14095.
  • Gerbig, Y. B., & Michaels, C. A. (2020). In-situ Raman spectroscopic measurements of the deformation region in indented glasses. Journal of Non-Crystalline Solids, 530, 119828.
  • Giannossa, L. C., Forleo, T., & Mangone, A. (2021). The distinctive role of chemical composition in archaeometry: The case of Apulian red figure pottery. Applied Sciences, 11(7), 3073.
  • Hall, M. E. (2017). X-ray fluorescence-energy dispersive (ED-XRF) and wavelength dispersive (WD-XRF) spectrometry. In A. M. W. Hunt (Ed.), The Oxford handbook of archaeological ceramic analysis (p. 342). Oxford University Press.
  • Hashimoto, H., Higuchi, K., Inada, H., Okazaki, Y., Takaishi, T., & Asoh, H. (2016a). Well-dispersed α-Fe₂O₃ particles for lead-free red overglaze enamels through hydrothermal treatment. ACS Omega, 1(1), 9–13.
  • Hashimoto, H., Inada, H., Okazaki, Y., Takaishi, T., Fujii, T., Takada, J., & Asoh, H. (2016b). Controlling the color of lead-free red overglaze enamels and a process for preparing high-quality red paints. ACS Applied Materials & Interfaces, 8(17), 10918–10928.
  • Hunt, A. M. W., & Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 53, 626–638.
  • Inada, H., Okazaki, Y., Yokoyama, T., Takaishi, T., Fujii, T., Takada, J., Asoh, H., & Hashimoto, H. (2018). Interaction between lead-free multicomponent alkali borosilicate glass frits and hematite in red overglaze enamels. Journal of the American Ceramic Society, 101(10), 4538–4548.
  • Innocenzi, P. (2003). Infrared spectroscopy of sol–gel-derived silica-based films: A spectra-microstructure overview. Journal of Non-Crystalline Solids, 316, 309–319.
  • Jiusti, J., Zanotto, E. D., Feller, S. A., Austin, H. J., Detar, H. M., Bishop, I., Manzani, D., Nakatsuka, Y., Watanabe, Y., & Inoue, H. (2020). Effect of network formers and modifiers on the crystallization resistance of oxide glasses. Journal of Non-Crystalline Solids, 550, 120359.
  • Li, M., Dong, C., Ma, Y., & Jiang, H. (2023). Light-transmitting lithium aluminosilicate glass-ceramics with excellent mechanical properties based on cluster model design. Nanomaterials, 13(3), 530.
  • Li, Y., Liu, P., Luo, Y., Ge, M, Xing, H., & Li, Y. (2024). Corrosion mechanisms for lead-glazed pottery from Qibi Ming Tomb of the Tang Dynasty in Xianyang, China. Heritage Science, 12, 224.
  • Liu, G. L., & Kazarian, S. G. (2022). Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst, 147(9), 1777–1797.
  • Liu, H., Hahn, S. H., Ren, M., Thiruvillamalai, M., Gross, T. M., Du, J., van Duin, A. C. T., & Kim, S. H. (2020). Searching for correlations between vibrational spectral features and structural parameters of silicate glass network. Journal of the American Ceramic Society, 103(6), 3575–3589.
  • Liu, H., Kaya, H., Lin, Y. T., Ogrinc, A., & Kim, S. H. (2021). Vibrational spectroscopy analysis of silica and silicate glass networks. Journal of the American Ceramic Society, 105(4), 2355–2384.
  • McMillan, P. (1984). Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy. American Mineralogist, 69(7–8), 622–644.
  • Mihailova, I., Harizanova, R., Tasheva, T., Dimova, N., & Rüssel, C. (2023). Physicochemical and structural characterization of silicate glasses containing iron oxides. Journal of Chemical Technology and Metallurgy, 58(1), 3–7.
  • Mommsen, H., Beier, T., Diehl, U., & Podzuweit, C. (1992). Provenance determination of Mycenaean sherds found in Tell el Amarna by neutron activation analysis. Journal of Archaeological Science, 19(3), 295–302.
  • Moropoulou, A., Zendri, E., Ortiz, P., Delegou, E. T., Ntoutsi, I., Balliana, E., Becerra, J., & Ortiz, R. (2019). Scanning microscopy techniques as an assessment tool of materials and interventions for the protection of built cultural heritage. Scanning, 2019, 5376214.
  • Nilsson, J. E. (2023). Dragonware. Gotheborg. Retrieved September 17, 2025, from https://www.gotheborg.com/glossary/dragonware.shtml
  • Nilsson, J. E. (2023). Moriage (piling-up). Gotheborg. Retrieved September 17, 2025, from https://www.gotheborg.com/glossary/moriage.shtml
  • Ostroumov, M., Faulques, E., & Lounejeva, E. (2002). Raman spectroscopy of natural silica in Chicxulub impactite, Mexico. Comptes Rendus Geoscience, 334(1), 21–26.
  • Öz, C., & Özer, Ö. (2019). Seramik arkeometrisi’nde spektroskopik yöntemlerin uygulanması ve yorumlanması: XRF, XRD. Seramik Araştırmaları Dergisi, 1, 136–153.
  • Papliaka, Z. E., Vaccari, L., Zanini, F., & Sotiropoulou, S. (2015). Improving FTIR imaging speciation of organic compound residues or their degradation products in wall painting samples using a new thin section preparation strategy based on cyclododecane pre-treatment. Analytical and Bioanalytical Chemistry, 407(18), 5393–5403.
  • Perna, M. G., Falcone, F., Casolino, C., Metalla, E., Rosatelli, G., Antonelli, S., & Stoppa, F. (2024). Analysing the glaze of a medieval ceramic fragment from the Durres amphitheater in Albania. Heritage Science, 12, 82.
  • Pięta, E., Olszewska-Świetlik, J., Paluszkiewicz, C., Zając, A., & Kwiatek, W. M. (2019). Application of ATR-FTIR mapping to identification and distribution of pigments, binders and degradation products in a 17th century painting. Vibrational Spectroscopy, 103, 102928.
  • Pięta, E., Proniewicz, E., Szmelter-Fausek, B., Olszewska-Świetlik, J., & Proniewicz, L. M. (2014). Micro-Raman spectroscopy analysis of the 17th century panel painting “Servilius Appius” by Isaac van den Blocke. Journal of Raman Spectroscopy, 45(11–12), 1019–1025.
  • Pradell, T., & Molera, J. (2020). Ceramic technology: How to characterise ceramic glazes. Archaeological and Anthropological Sciences, 12, 189.
  • Prati, S., Joseph, E., Sciutto, G., & Mazzeo, R. (2010). New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Accounts of Chemical Research, 43(6), 792–801.
  • Prati, S., Sciutto, G., Bonacini, I., & Mazzeo, R. (2016). New frontiers in application of FTIR microscopy for characterization of cultural heritage materials. Topics in Current Chemistry, 374, 26.
  • Qu, L., Zhang, X., Duan, H., Zhang, R., Li, G., & Lei, Y. (2017). The application of LIBS and other techniques on Chinese low temperature glaze. MRS Advances, 2(39), 2081–2094.
  • Ravindran, T., Arora, A. K., Ramya, S., Subba Rao, R., & Raj, B. (2011). Raman spectroscopic study of medieval Indian art of 17th century. Journal of Raman Spectroscopy, 42(4), 803–807.
  • Ricci, G. (2016). Archaeometric studies of historical ceramic materials (Doctoral dissertation). Universita Ca’ Foscari Venezia.
  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731–1742.
  • Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., & Bonanno, E. (2018). Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry, 62(1), 2841.
  • Serra, J., González, P., Liste, S., Serra, C., Chiussi, S., León, B., Pérez-Amor, M., Ylänen, H. O., & Hupa, M. (2003). FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids, 332, 20–27.
  • Sitarz, M. (2011). The structure of simple silicate glasses in the light of middle infrared spectroscopy studies. Journal of Non-Crystalline Solids, 357(6), 603–608.
  • Smith, G. D., & Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science, 31(8), 1137–1160.
  • Sparavigna, A. C. (2023). Raman spectroscopy of the iron oxides in the form of minerals, particles and nanoparticles. ChemRxiv. Retrieved September 24, 2025, from http://www.edpsciences.org/docinfos/INRARND
  • Szökefalvi‐Nagy, Z., Demeter, I., Kocsonya, A., & Kovács, I. (2004). Non-destructive XRF analysis of paintings. Nuclear Instruments and Methods in Physics Research Section B, 226, 53–59.
  • Taylor, W. (1990). Application of infrared spectroscopy to studies of silicate glass structure: Examples from the melilite glasses and the systems Na₂O-SiO₂ and Na₂O-Al₂O₃-SiO₂. Proceedings of the Indian Academy of Sciences, 99(1), 99–117.
  • Tite, M. S., Freestone, I., Mason, R., Molera, J., Vendrell‐Saz, M., & Wood, N. (1998). Lead glazes in antiquity—Methods of production and reasons for use. Archaeometry, 40(2), 241–260.
  • Turco, F., Davit, P., Cossio, R., Agostino, A., & Operti, L. (2017). Accuracy improvement by means of porosity assessment and standards optimization in SEM-EDS and XRF elemental analyses on archaeological and historical pottery and porcelain. Journal of Archaeological Science: Reports, 12, 54–65.
  • Veeramuthu, K., Sekar, S. C., & Saravanan, D. (2014). Characteristic analysis of archaeological pottery recently excavated from the site Mayiladumparai, Krishnagiri District, Tamil Nadu, India by analytical techniques. International Journal of Chemical Studies, 2(1), 64–68.
  • Weber, J., Beier, T., Diehl, U., Lambrecht, D., Mommsen, H., & Pantenburg, F. (1990). A PIXE mini-beam setup at the Bonn cyclotron for archeometric metal analyses. Nuclear Instruments and Methods in Physics Research Section B, 50(1–4), 221–225.
  • Willman, A. (2011). Edo-period Japanese porcelain. Heilbrunn Timeline of Art History. The Metropolitan Museum of Art. Retrieved November 19, 2025, from https://www.metmuseum.org/essays/edo-period-japanese-porcelain
  • Wu, J., & Stebbins, J. F. (2009). Effects of cation field strength on the structure of aluminoborosilicate glasses: High-resolution 11B, 27Al and 23Na MAS NMR. Journal of Non-Crystalline Solids, 355(9), 556–562.
There are 68 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Research Article
Authors

Duygu Takanoğlu Bulut 0000-0001-6691-7813

Submission Date September 24, 2025
Acceptance Date November 23, 2025
Early Pub Date December 3, 2025
Publication Date January 15, 2026
Published in Issue Year 2026 Volume: 9 Issue: 1

Cite

APA Takanoğlu Bulut, D. (2026). Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate. Black Sea Journal of Engineering and Science, 9(1), 206-217. https://doi.org/10.34248/bsengineering.1790069
AMA 1.Takanoğlu Bulut D. Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate. BSJ Eng. Sci. 2026;9(1):206-217. doi:10.34248/bsengineering.1790069
Chicago Takanoğlu Bulut, Duygu. 2026. “Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate”. Black Sea Journal of Engineering and Science 9 (1): 206-17. https://doi.org/10.34248/bsengineering.1790069.
EndNote Takanoğlu Bulut D (January 1, 2026) Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate. Black Sea Journal of Engineering and Science 9 1 206–217.
IEEE [1]D. Takanoğlu Bulut, “Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate”, BSJ Eng. Sci., vol. 9, no. 1, pp. 206–217, Jan. 2026, doi: 10.34248/bsengineering.1790069.
ISNAD Takanoğlu Bulut, Duygu. “Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate”. Black Sea Journal of Engineering and Science 9/1 (January 1, 2026): 206-217. https://doi.org/10.34248/bsengineering.1790069.
JAMA 1.Takanoğlu Bulut D. Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate. BSJ Eng. Sci. 2026;9:206–217.
MLA Takanoğlu Bulut, Duygu. “Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate”. Black Sea Journal of Engineering and Science, vol. 9, no. 1, Jan. 2026, pp. 206-17, doi:10.34248/bsengineering.1790069.
Vancouver 1.Takanoğlu Bulut D. Spectroscopic Approaches to Cultural Heritage Objects: A Moriage-Decorated Japanese Dragonware Plate. BSJ Eng. Sci. [Internet]. 2026 Jan. 1;9(1):206-17. Available from: https://izlik.org/JA78GX89LT

                            24890