Research Article
BibTex RIS Cite

Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi

Year 2021, , 153 - 159, 01.10.2021
https://doi.org/10.34248/bsengineering.899753

Abstract

Bu çalışmanın amacı, ayçiçeği hatlarının demir beslenme kabiliyetleri yönünden gruplandırılması ve bu hatların en iyi demir beslenme özelliklerinin belirlenmesidir. Bu amaçla, 445 g kuvars kumu ortamına % 5,6 CaCO3 olacak şekilde her saksıya 25 g CaCO3 uygulanmıştır. Denemede pH’sı 6,0’a ayarlı demirsiz besin çözeltisi aşağıdaki konsantrasyonlarda hazırlanmıştır. 0,75 mM K2SO4; 2,0 mM Ca(NO3)2.4H2O; 1,0 mM MgSO4.7H2O; 0,25 mM KH2PO4; 0,1 mM KCl; 1,0 µM MnSO4; 1,0 µM ZnSO4.7H2O; 10 µM H3BO3; 0,01 µM (NH4)6Mo7O24; 0,1 µM CuSO4.5H2O. Faktöriyel deneme desenine göre 7 × 3 şeklinde planlanan denemede muameleler 3 tekerrürlü uygulanmıştır. Yukarıdaki konsantrasyonlarda hazırlanan besin çözeltisine 0-45 ve 100 µM Fe içerecek şekilde Fe-EDDHA ilave edilmiştir. Demirsiz besin çözeltisi ile yetiştirilen ayçiçeği hatlarının kuru madde miktarları ve bu hatların demir beslenmesi ile ilgili diğer özelliklerine ait değerler, 45 ve 100 µM demir içeren besin çözeltisi ile yetiştirilen hatların kuru madde miktarlarına ve diğer demir beslenme özelliklerine ilişkin değerlerine bölünmesi ile ayçiçeği hatlarının kireçli ortamda demir noksanlığına tolerans indeks değerleri hesaplanmıştır. Demir noksanlığı şartlarında, demir beslenme özellikleri yönünden 12, 18, 25 ve 34 numaralı ayçiçeği hatları birinci grubu; 21, 28 ve 37 numaralı hatlar ise ikinci grubu oluşturmuştur. 28 ve 37 numaralı hatların birbirine en yakın; 12 ve 21 numaralı hatların ise birbirinden en uzak hatlar oldukları belirlenmiştir. Hatlardan 12 nolu ayçiçeği hattı kökte ve yaprakta ferrik redüktaz enzim aktivitesi, klorofil-a, klorofil-b, toplam klorofil kapsamları bakımından 21 nolu ayçiçeği hattına göre daha yüksek bulunmuştur. Demir noksanlığı şartlarında demir beslenme özellikleri yönünden 12 nolu hattın 21 numaralı hatta göre daha iyi bir hat olduğu sonucuna varılmıştır.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Alcantara E, De La Guardia MD. 1991. Variability of sunflower inbred lines to iron deficiency stress. Plant Soil, 130: 93-96.
  • Arnon D. 1949. Copper enzymes in isolated chloroplasts. Plant Physiol, 24: 1-12.
  • Aytaç S, Arslanoğlu ŞF, Yiğen Ç. 2016. Some morphological characteristics of confectionary sunflower genotypes obtained through selection breeding. p.1102-1105. 19th International Sunflower Conference, Edirne, Turkey.
  • Brown C, Olsen RA. 1980. Factors related to iron uptake by Dicotyledonous and Monocotyledonous plants III. Competition between root and external factors for Fe. J Plant Nutr, 2: 661-682.
  • Chaney RL, Brown JC, Tiffin LO. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol, 50: 208–213.
  • Eyüpoğlu F, Kurucu N, Talaz S, Canısağ U. 1997. Plant available trace iron, zinc, manganese and copper in Turkish soils. Accomplishments and future challenges in dryland soil fertility research in the Mediterranean Area, ICARDA book, 191-196.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch, 48: 909-930.
  • Görmüş O, Barutçular C. 2016. Boron nutrition studies with cotton and sunflower in Southern Turkey. Commun Soil Sci Plant Anal, 47(7): 915-929.
  • Inskeep WP, Bloom PR. 1987. Soil chemical factors associated with soybeanbchlorosis in calciaquolls of western Minnesota. Agron J, 79: 779-786.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M. 2006. Rice plants take up iron as an Fe+3 phytosiderophore and as Fe+2. Plant J, 45: 335-346.
  • Kacar B, İnal A. 2008. Bitki Analizleri, 1. Basım. Nobel Yayınları, Ankara, Türkiye. 912 sayfa.
  • Krouma A, Drevon JJ, Abdelly C. 2006. Genotypic variation of N2 fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. J Plant Physiol, 163: 1094-1100.
  • Ksouri R, Debez A, Mahmoudi H, Ouerghi Z, Gharsalli M, Lachaal M. 2007. Genotypic variability within Tunusian grapevine varieties (Vitis vinifera L.) facing biocarbonate-induced iron deficiency. Plant Physiol Bioch, 45: 315-322.
  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. 2013. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep, 31: 569-580.
  • Marschner H, Römheld V, Kissel M. 1986. Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr, 6: 695-713.
  • Marschner H. 1995. Function of Mineral Nutrients: Micronutrients. In: Mineral Nutrition of Higher Plants. Academic Press, London, UK. pp 313-324.
  • Mengel K, Planker R, Hoffmann B. 1994. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). J Plant Nutr, 17(6): 1053-1065.
  • Ohwaki Y, Sugahara K. 1993. Genotypical differences in responses to iron deficiency between sensitive and resistant cultivars of chickpea (Cicer arietinum). Plant Soil, 155/156: 473-476.
  • Ojeda M, Schaffer B, Davies FS. 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr, 27: 1381-1393.
  • Öztürk L, Yazıcı A, Eker S, Gökmen Ö, Römheld V, Çakmak I. 2008. Glyphosate inhibition of ferric reductase activity in iron deficiency sunflower roots. New Phytol, 177: 899-906.
  • Ranieri A, Castagna A, Baldan B, Soldatini GF. 2001. Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot, 52(354): 25-35.
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 80: 175-180.
  • Slatni T, Krouma A, Gouia H, Abdelly C. 2009. Importance of ferric chelate reductase activity and acidification capacity in root nodules of N2-fixing common bean (Phaseolus Vulgaris L.) subjected to iron deficiency. Symbiosis, 47: 35-42.
  • Takkar PN, Kaur NP. 1984. HCl method for Fe+2 estimation to resolve iron chlorosis in plants. J Plant Nutr, 7(1-5): 81-90.
  • Torun AA, Erdem H, Torun MB. 2017. Ayçiçeği genotiplerinin demir noksanlığına karşı tolerans düzeylerinin belirlenmesi. Türk Tarım-Gıda Bilimi ve Teknol Derg, 5(11): 1323-1329.
  • Witham FH, Blaydes DF, Devlin RM. 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York. P: 245.
  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z. 2012. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13: 101. DOI: 10.1186/1471-2164-13-101.

Grouping Sunflower Lines in Terms of Iron Nutrition Capabilities and Determining the Best Iron Nutrition Characteristics of These Lines

Year 2021, , 153 - 159, 01.10.2021
https://doi.org/10.34248/bsengineering.899753

Abstract

The aim of this study is to group the sunflower lines in terms of their iron nutrition ability and to determine the best iron nutrition properties of these lines. For this purpose, 25 g CaCO3 was applied to each pot with 5.6 % CaCO3 in 445 g quartz sand media. In the experiment, non-ferrous nutrient solution with pH adjusted to 6.0 was prepared in the following concentrations. 0.75 mM K2SO4; 2.0 mM Ca(NO3)2.4H2O; 1.0 mM MgSO4.7H2O; 0.25 mM KH2PO4; 0.1 mM KCl; 1.0 µM MnSO4; 1.0 µM ZnSO4.7H2O; 10 µM H3BO3; 0.01 µM (NH4)6Mo7O24; 0.1 µM CuSO4.5H2O. In the experiment, which was planned as 7 × 3 according to the factorial trial design, the treatments were applied in 3 repetitions. Fe-EDDHA, containing 0, 45 and 100 µM Fe, was added to the nutrient solution prepared at the above concentrations. Tolerance index values of sunflower lines for iron deficiency in calcareous environment were calculated as follows. It was calculated by dividing the values of iron feeding characteristics and dry matter contents of sunflower lines grown with non-ferrous nutrient solution to the same characteristics of the lines grown with 45 and 100 µM iron-containing nutrient solution. Sunflower lines 12, 18, 25 and 34 formed the first group in terms of iron nutritional properties under iron deficiency conditions; however, lines 21, 28 and 37 formed the second group. It has been determined that lines 28 and 37 are the closest sunflower lines, while lines 12 and 21 are the furthest from each other. The sunflower line no. 12 was found to be higher in terms of ferric reductase enzyme activity in root and leaf, chlorophyll-a, chlorophyll-b, total chlorophyll contents than the sunflower line no.21. It was concluded that sunflower line no 12 is better than line no 21 in terms of iron nutritional properties under iron deficiency conditions.

Project Number

-

References

  • Alcantara E, De La Guardia MD. 1991. Variability of sunflower inbred lines to iron deficiency stress. Plant Soil, 130: 93-96.
  • Arnon D. 1949. Copper enzymes in isolated chloroplasts. Plant Physiol, 24: 1-12.
  • Aytaç S, Arslanoğlu ŞF, Yiğen Ç. 2016. Some morphological characteristics of confectionary sunflower genotypes obtained through selection breeding. p.1102-1105. 19th International Sunflower Conference, Edirne, Turkey.
  • Brown C, Olsen RA. 1980. Factors related to iron uptake by Dicotyledonous and Monocotyledonous plants III. Competition between root and external factors for Fe. J Plant Nutr, 2: 661-682.
  • Chaney RL, Brown JC, Tiffin LO. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol, 50: 208–213.
  • Eyüpoğlu F, Kurucu N, Talaz S, Canısağ U. 1997. Plant available trace iron, zinc, manganese and copper in Turkish soils. Accomplishments and future challenges in dryland soil fertility research in the Mediterranean Area, ICARDA book, 191-196.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch, 48: 909-930.
  • Görmüş O, Barutçular C. 2016. Boron nutrition studies with cotton and sunflower in Southern Turkey. Commun Soil Sci Plant Anal, 47(7): 915-929.
  • Inskeep WP, Bloom PR. 1987. Soil chemical factors associated with soybeanbchlorosis in calciaquolls of western Minnesota. Agron J, 79: 779-786.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M. 2006. Rice plants take up iron as an Fe+3 phytosiderophore and as Fe+2. Plant J, 45: 335-346.
  • Kacar B, İnal A. 2008. Bitki Analizleri, 1. Basım. Nobel Yayınları, Ankara, Türkiye. 912 sayfa.
  • Krouma A, Drevon JJ, Abdelly C. 2006. Genotypic variation of N2 fixing common bean (Phaseolus vulgaris L.) in response to iron deficiency. J Plant Physiol, 163: 1094-1100.
  • Ksouri R, Debez A, Mahmoudi H, Ouerghi Z, Gharsalli M, Lachaal M. 2007. Genotypic variability within Tunusian grapevine varieties (Vitis vinifera L.) facing biocarbonate-induced iron deficiency. Plant Physiol Bioch, 45: 315-322.
  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. 2013. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep, 31: 569-580.
  • Marschner H, Römheld V, Kissel M. 1986. Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr, 6: 695-713.
  • Marschner H. 1995. Function of Mineral Nutrients: Micronutrients. In: Mineral Nutrition of Higher Plants. Academic Press, London, UK. pp 313-324.
  • Mengel K, Planker R, Hoffmann B. 1994. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). J Plant Nutr, 17(6): 1053-1065.
  • Ohwaki Y, Sugahara K. 1993. Genotypical differences in responses to iron deficiency between sensitive and resistant cultivars of chickpea (Cicer arietinum). Plant Soil, 155/156: 473-476.
  • Ojeda M, Schaffer B, Davies FS. 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr, 27: 1381-1393.
  • Öztürk L, Yazıcı A, Eker S, Gökmen Ö, Römheld V, Çakmak I. 2008. Glyphosate inhibition of ferric reductase activity in iron deficiency sunflower roots. New Phytol, 177: 899-906.
  • Ranieri A, Castagna A, Baldan B, Soldatini GF. 2001. Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot, 52(354): 25-35.
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 80: 175-180.
  • Slatni T, Krouma A, Gouia H, Abdelly C. 2009. Importance of ferric chelate reductase activity and acidification capacity in root nodules of N2-fixing common bean (Phaseolus Vulgaris L.) subjected to iron deficiency. Symbiosis, 47: 35-42.
  • Takkar PN, Kaur NP. 1984. HCl method for Fe+2 estimation to resolve iron chlorosis in plants. J Plant Nutr, 7(1-5): 81-90.
  • Torun AA, Erdem H, Torun MB. 2017. Ayçiçeği genotiplerinin demir noksanlığına karşı tolerans düzeylerinin belirlenmesi. Türk Tarım-Gıda Bilimi ve Teknol Derg, 5(11): 1323-1329.
  • Witham FH, Blaydes DF, Devlin RM. 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York. P: 245.
  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z. 2012. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13: 101. DOI: 10.1186/1471-2164-13-101.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Güney Akınoğlu 0000-0003-4624-2876

Ahmet Korkmaz 0000-0001-5595-0618

Elif Boz This is me 0000-0001-9579-025X

Project Number -
Publication Date October 1, 2021
Submission Date March 19, 2021
Acceptance Date April 5, 2021
Published in Issue Year 2021

Cite

APA Akınoğlu, G., Korkmaz, A., & Boz, E. (2021). Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi. Black Sea Journal of Engineering and Science, 4(4), 153-159. https://doi.org/10.34248/bsengineering.899753
AMA Akınoğlu G, Korkmaz A, Boz E. Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi. BSJ Eng. Sci. October 2021;4(4):153-159. doi:10.34248/bsengineering.899753
Chicago Akınoğlu, Güney, Ahmet Korkmaz, and Elif Boz. “Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması Ve Bu hatların En Iyi Demir Beslenme Özelliklerinin Belirlenmesi”. Black Sea Journal of Engineering and Science 4, no. 4 (October 2021): 153-59. https://doi.org/10.34248/bsengineering.899753.
EndNote Akınoğlu G, Korkmaz A, Boz E (October 1, 2021) Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi. Black Sea Journal of Engineering and Science 4 4 153–159.
IEEE G. Akınoğlu, A. Korkmaz, and E. Boz, “Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi”, BSJ Eng. Sci., vol. 4, no. 4, pp. 153–159, 2021, doi: 10.34248/bsengineering.899753.
ISNAD Akınoğlu, Güney et al. “Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması Ve Bu hatların En Iyi Demir Beslenme Özelliklerinin Belirlenmesi”. Black Sea Journal of Engineering and Science 4/4 (October 2021), 153-159. https://doi.org/10.34248/bsengineering.899753.
JAMA Akınoğlu G, Korkmaz A, Boz E. Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi. BSJ Eng. Sci. 2021;4:153–159.
MLA Akınoğlu, Güney et al. “Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması Ve Bu hatların En Iyi Demir Beslenme Özelliklerinin Belirlenmesi”. Black Sea Journal of Engineering and Science, vol. 4, no. 4, 2021, pp. 153-9, doi:10.34248/bsengineering.899753.
Vancouver Akınoğlu G, Korkmaz A, Boz E. Ayçiçeği Hatlarının Demir Beslenme Kabiliyetleri Yönünden Gruplandırılması ve Bu hatların En iyi Demir Beslenme Özelliklerinin Belirlenmesi. BSJ Eng. Sci. 2021;4(4):153-9.

                                                24890