Review
BibTex RIS Cite

Leaf ecological functions in ecosystems

Year 2018, Volume: 1 Issue: 2, 68 - 82, 01.04.2018

Abstract

In this study, the physical and chemical properties of leaf which is a vegetative organ of high structured plants and their effects on the biology and ecosystem functions were tried to be explained. Leaves are the important ecophysiological indicators in the higher plants. Physical properties as well as leaf chemical contents are closely related to physiology and function. Many studies conducted on the leaves provide valuable information about the ecosystem development and plant functional characteristics.

References

  • Ackerly DD, Reich PB. 1999. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot, 86: 1272-1281.
  • Ackerly D, Knight C, Weiss S, Barton K, Starmer K. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130: 449-457.
  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns. J Ecol, 84: 597-608.
  • Aerts R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot, 50: 29-37.
  • Aerts R, Chapin III FS. 2000. The mineral nutrition of wild plants revisited. Adv Ecol Res, 30: 1-67.
  • Aerts R, Van der Peijl MJ. 1993. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos: 144-147.
  • Agati G, Brunetti C, Di Ferdinando, M, Ferrini F, Pollastri S, Tattini M. 2013. Functional role of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem, 72: 35–45.
  • Ågren GI. 2004. The C: N: P stoichiometry of autotrophs–theory and observations. Ecol Lett, 7: 185-191.
  • Aponte C, Garcia LV, Maranon T. 2013. Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For Ecol Manage, 309: 36–46.
  • Ares A, Gleason SM. 2007. Foliar nutrient resorption in tree species. In: Scaggs AK, editor. New research on forest ecology. New York: New Yor kSscience Publishers, Inc; p. 1-32.
  • Baptista Haddad CR, Lemos DP, Mazzafera P. 2004. Leaf life span and nitrogen content in semideciduous forest tree species (Croton priscus and Hymenaea courbaril). Sci. Agric. (Piracicaba, Braz.), 61: 462-465.
  • Bardgett RD. 2017. Plant trait-based approaches for interrogating belowground function. Biol Environ, 117B: 1-13.
  • Barron A R, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO. 2009. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci, 2: 42-45.
  • Berg B, Davey MP, De Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, De Santo AV. 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100: 57-73.
  • Bergmann W. 1992. Colour Atlas: Nutritional Disorders of Plants. Jena: Gustav Fischer Verlag.
  • Bhaskar R, Porder S, Balvanera P, Edwards EJ. 2016. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession. Ecology, 97: 1194-1206.
  • Bilgin A, Yalçın E, Kutbay HG, Kök T. 2004. Foliar N and P dynamics of Heracleum platytaenium (Apiaceae) in relation to edaphic characteristics along an elevation gradient in northern Turkey. Ann Bot Fennici, 41: 85-93.
  • Bonneau M. 1988. La diagnostic foliaire. Rev For Fr, 40: 19–28.
  • Bouropoulos N, Weiner S, Addadi L. 2001. Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal‐associated macromolecules. Chem Eur J, 7: 1881-1888.
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol, 173: 677-702.
  • Bruschi P, Grossoni P, Bussotti F. 2003. Within-and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees, 17: 164-172.
  • Bussotti F, Pollastrini M. 2015. Evaluation of leaf features in forest trees: Methods, techniques, obtainable information and limits. Ecol Ind, 52, 219-230.
  • Bussotti F, Prancrazi M, Matteucci G, Gerosa G. 2005. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol, 25: 211-219.
  • Castro-Diez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G. 1997. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees, 11: 127-134.
  • Castro-Díez P, Puyravaud JP, Cornelissen JHC. 2000. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia; 124: 476–486.
  • Chapin FS. 1980. The mineral nutrition of wild plants. Ann Rev Ecol Syst, 11: 233-260.
  • Chapin III FS. 1989. The cost of tundra plant structures: evaluation of concepts and currencies. Am Nat, 133: 1-19.
  • Chapin FS. 1991. Integrated responses of plants to stress. BioScience, 41: 29-36.
  • Chapin III FS, Kedrowski RA. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64: 376-391.
  • Chapin III FS, Moilanen L. 1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72: 709-715.
  • Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol, 30: 239–264.
  • Coley PD. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr, 53: 209-234.
  • Coley PD. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia, 74: 531-536.
  • Crane WJB, Banks JCG. 1992. Accumulation and retranslocation of foliar nitrogen in fertilised and irrigated Pinus radiata. Forest Ecol Manag, 52: 201-223.
  • Cunningham SA, Summerhayes B, Westoby M. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr, 69: 569-588.
  • Davey MP, Berg B, Emmett BA, Rowland P. 2007. Decomposition of oak leaf litter is related to initial litter Mn concentrations. Can J Botany,85: 16-24.
  • De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardget, RD, Berg MP, Cipriotti P, Feld CK, Hering D, da Silva PM, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv, 19: 2873–2893.
  • De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, Van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA. 2009. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol Manag, 258: 1814-1823.
  • De la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R. 2016. Leaf mass per area (lma) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoSONE, 11: e0148788. https://doi.org/10.1371/journal.pone.0148788
  • Diemer M. 1998. Life span and dynamics of leaves of herbaceous perennials in high‐elevation environments:‘news from the elephant’s leg’. Funct Ecol, 12: 413-425.
  • Doğan A, Yalçın E, Sürmen B, Kutbay H G. 2015. Seasonal and altitudinal changes in leaf nutrient concentrations of Hedera helix L.(Araliaceae). Rev Ecol- Terre Vie, 70: 166-181.
  • Duquesnay A, Dupouey JL, Clement A, Ulrich E, Le Tacon F. 2000. Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France. Tree Physiol, 20: 13-22.
  • Eckstein RL, Karlsson PS, Weih M. 1999. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate‐arctic regions. New Phytol, 143: 177-189.
  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauleyk E, Schulz KL, Siemann EH, Sterner RW. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408: 578-580.
  • Escudero A, Del Arco JM, Sanz IC, Ayala J. 1992. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia, 90: 80-87.
  • Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78: 9-19.
  • Field C, Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish T, editor. On the Economy and Form and Function. Cambridge: Cambridge University Press; p. 25-55.
  • Fonseca CR, Overton JM, Collins B, Westoby M. 2000. Shifts in trait‐combinations along rainfall and phosphorus gradients. J Ecol, 88: 964-977.
  • Franceschi VR, Nakata PA. 2005. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol, 56: 41-71.
  • Fujii K, Shibata M, Kitajima K, Ichie T, Kitayama K, Turner BL. 2018. Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol Res, 33: 149-160.
  • Godo GH, Reisenauer HM. 1980. Plant effects on soil manganese availability. Soil Sci Soc Am J, 44: 993-995.
  • Grime JP. 1994. The role of plasticity in exploiting environmental heterogeneity. In: Caldwell MM, Pearcy RW, editors. Exploitation of environmental heterogeneity by plants: ecophysiological processes above-and belowground, London: Academic Press, p. 1-19.
  • Grime JP. 2002. Declining plant diversity: empty niches or functional shifts. J Veg Sci, 13: 457-460.
  • Güsewell S, Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol, 5: 37-61.
  • Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K. 2006. Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecol Manag, 228: 33-39.
  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller IS, White P. 2011. Functions of macronutrients. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. London: Academic Press; p. 135–178.
  • Hayes P, Turner BL, Lambers H, Laliberté E. 2014. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence. J Ecol, 102: 396-410.
  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC. 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85: 1179-1192.
  • He H, Bleby TM, Veneklaas EJ, Lambers H, Kuo J. 2012. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae).Ann Bot-London, 5:887-896.
  • Hobbie SE, Gough L. 2002. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 131: 453-462.
  • Housman DC, Killingbeck KT, Evans RD, Charlet TN, Smith SD. 2012. Foliar nutrient resorption in two Mojave Desert shrubs exposed to Free-Air CO 2 Enrichment (FACE). J Arid Environ, 78: 26-32.
  • Jaffré T. 1979. Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. CR Acad Sci. Série D: Sci Nat, 289: 425-428. Jauregui MA, Reisenauer HM. 1982. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci Soc Am J, 46: 314-317.
  • Kausch W, Haas W. 1966. Ligningehalte der zellwände bei sonnen-und schattenblättern der blutbuche (Fagus sylvatica L. cv. Atropunicea). Naturwissenschaften, 53: 89-89.
  • Kazakou E, Garnier E, Navas ML, Roumet C, Collin C, Laurent G. 2007. Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old‐fields differing in successional status. Funct Ecol, 21: 235-245.
  • Kılıç DD, Kutbay HG, Özbucak T, Hüseyinova R. 2010. Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevational gradient. Ann For Sci, 67: 213.
  • Kikuzawa K. 1995. The basis for variation in leaf longevity of plants. Vegetatio, 121: 89-100.
  • Killingbeck KT, Costigan SA. 1988. Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos, 53: 366-374.
  • Killingbeck KT, May JD, Nyman S. 1990. Foliar senescence in an aspen (Populus tremuloides) clone: the response of element resorption to interramet variation and timing of abscission. Can J Forest Res, 20: 1156-1164.
  • Killingbeck KT. 1992. Inefficient nitrogen resorption in a population of ocotillo (Fouquieria splendens), a drought-deciduous desert shrub. Southwest Nat, 37: 35-42.
  • Killingbeck K T. 1993. Nutrient resorption in desert shrubs. Rev Chil Hist Nat, 66: 345-355.
  • Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77: 1716-1727.
  • Killingbeck KT. 2008. Can zinc influence nutrient resorption? A test with the drought-deciduous desert shrub Fouquieria splendens (ocotillo). Plant Soil, 304: 145-155.
  • Kitayama K, Aiba S, Takyu M, Majalap N, Wagai R. 2004. Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems, 7: 259–274
  • Knecht MF, Göransson A. 2004. Terrestrial plants require nutrients in similar proportions. Tree Physiol, 24: 447-460.
  • Knops JM, Koenig WD. 1997. Site fertility and leaf nutrients of sympatric evergreen and deciduous species of Quercus in central coastal California. Plant Ecol, 130: 121-131.
  • Kobe RK, Lepczyk CA, Iyer M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86: 2780-2792.
  • Kutbay HG, Yalçın E, Bilgin A. 2003. Foliar N and P resorption and foliar nutrient concentrations in canopy and subcanopy of a Fagus orientalis forest. Belg Journ Bot, 136: 35-44.
  • Kutbay HG, Ok T, Bilgin A, Yalçın E. 2005. Seasonal nutrient levels and foliar resorption in Juniperus phoenicea. Belg Journ Bot, 138: 67-75.
  • Lal CB, Annapurna C, Raghubanshi AS, Singh JS. 2001. Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of a dry tropical environment. Can J Bot, 79: 1066-1075.
  • Lamaze T, Pasche F, Pornon A. 2003. Uncoupling nitrogen requirements for spring growth from root uptake in a young evergreen shrub (Rhododendron ferrugineum). New Phytol, 159: 637-644.
  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot-London, 98: 693-713.
  • Lambers H, Raven JA, Shaver GR, Smith SE. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol, 23: 95-103.
  • Lamont BB, Groom PK, Cowling RM. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol, 16: 403-412.
  • Landsberg JJ, Sands P. 2011. Physiological ecology of forest production: principles, processes and models. First ed. Burlington: Academic Press Elsevier Inc.
  • Lopez-Iglesias B, Olmo M, Gallardo A, Villar R. 2014. Short-term effects of litter from 21 woody species on plant growth and root development. Plant Soil, 381: 177–191.
  • Luyssaert S, Raitio H, Mertens J, Vervaeke P, Lust N. 2002. Should foliar cadmium concentrations be expressed on a dry weight or dry ash weight basis. J Environ Monitor, 4: 408-412.
  • Lynch JP, Clair SBS. 2004. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crop Res, 90: 101-115.
  • Manes F, Incerti G, Salvatori E, Vitale M, Ricotta C, Costanza R. 2012. Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecol Appl, 22: 349–360.
  • Marschner P, Crowley DE, Higashi R M. 1997. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil, 189: 11-20.
  • Mellert KH, Göttlein A. 2012. Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res, 131: 1461-1472.
  • Milla R, Castro‐Díez P, Maestro‐Martínez M, Montserrat‐Martí G. 2005. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol, 168: 167-178.
  • Minoletti ML, Boerner REJ. 1994. Drought and site fertility effects on foliar nitrogen and phosphorus dynamics and nutrient resorption by the forest understory shrub Viburnum acerifolium L. Am Midl Nat, 131: 109-119.
  • Monk CD. 1966. An ecological significance of evergreenness. Ecology,47: 504-505.
  • Nakata PA. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci, 164: 901-909.
  • Niinemets Ü. 1999. Research review. Components of leaf dry mass per area–thickness and density–alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol, 144: 35-47.
  • Niinemets Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82: 453-469.
  • Niinemets Ü, Portsmuth A, Truus L. 2002. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species. Ann Bot, 89: 191-204.
  • Niinemets Ü. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res, 25: 693-714.
  • Norby RJ, Jackson RB. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytol, 147: 3-12.
  • Özbucak TB, Kutbay HG, Kılıç DD, Korkmaz H, Bilgin A, Yalçın E, Apaydın Z. 2008. Foliar resorption of nutrients in selected sympatric tree species in gallery forest Black Sea region. Pol J Ecol, 56: 227-237.
  • Parkhurst DF. 1994. Diffusion of CO2 and other gases inside leaves. New Phytol, 126: 449-479.
  • Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Commun, 4: 2934.
  • Poorter H, De Jong ROB. 1999. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol, 143: 163-176.
  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytol, 182: 565-588.
  • Pregitzer KS, Dickmann DI, Hendrick R, Nguyen PV. 1990. Whole tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiol,7: 79-93.
  • Pugnaire FI, Chapin III FS. 1993. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology, 74: 124-129.
  • Quero JL, Villar R, Marañon T, Zamora R. 2006. Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytol, 2006: 170: 819–834.
  • Rautio P, Fürst A, Stefan K, Raitio H, Bartels U. 2010. Sampling and analysis of needles and leaves. Manual Part XII. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, UNECE, ICP Forests Programme Co-ordinating Centre, Hamburg.
  • Reich PB. 1993. Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: The blind men and the elephant retold'. Funct Ecol, 7: 721-725.
  • Reich PB, Uhl C, Walters MB, Ellsworth DS. 1991. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia, 86: 16-24.
  • Reich PB, Walters MB, Ellsworth DS. 1992. Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr, 62: 365-392.
  • Reich PB, Oleksyn J, Tjoelker MG. 1996. Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: a common garden test with field-grown trees. Funct Ecol, 10: 768-776.
  • Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA, 94: 13730-13734.
  • Reich PB, Oleksyn J, Wright IJ. 2009. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160: 207-212.
  • Rejmánková E. 2005. Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytol, 167: 471-482.
  • Richardson CJ, Ferrell GM, Vaithiyanathan P. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology, 80: 2182-2192.
  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL. 2004. Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139: 267-276.
  • Roderick ML, Berry SL, Noble IR. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct Ecol, 14: 423-437.
  • Roem WJ, Berendse F. 2000. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv, 92: 151-161.
  • Ruíz-Robleto J, Villar R. 2005. Relative growth rate and biomass allocation in ten woody species with different leaf longevity using phylogenetic independent contrasts (PICs). Plant Biol, 7: 484–494.
  • Ryser P, Urbas P. 2000. Ecological significance of leaf life span among Central European grass species. Oikos, 91: 41-50.
  • Saur E, Nambiar EKS, Fife DN. 2000. Foliar nutrient retranslocation in Eucalyptus globulus. Tree Physiol, 20: 1105-1112.
  • Sedjo R, Sohngen B. 2012. Carbon sequestration in forests and soils. Ann Rev Res Econ, 4: 127–144.
  • Shane MW, Lambers H. 2005. Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plantarum, 124: 441-450.
  • Shipley B. 1995. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Funct Ecol, 9: 312–319.
  • Soethe N, Lehmann J, Engels C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. J Trop Ecol, 24:, 397.
  • Soh WK, Wright IJ, Bacon KL, Lenz TI, Steinthorsdottir M, Parnell AC, McElwain JC. 2017. A new paleo-leaf economic proxy reveals a shift in ecosystem function in response to global warming at the onset of the Triassic period. Nat Plants, 3: 17104.
  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. NJ: Princeton University Press.
  • Suseela V, Tharayil N, Xing B, Dukes JS. 2015. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Glob Change Biol, 21: 4177-4195.
  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ, 9: 9-17.
  • Trémolières M, Sánchez-Pérez JM, Schnitzler A, Schmitt D. 1998. Impact of river management history on the community structure, species composition and nutrient status in the Rhine alluvial hardwood forest. Plant Ecol, 135: 59–78.
  • Treseder KK, Vitousek PM. 2001. Potential ecosystem-level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawaii. Oecologia, 126: 266-275.
  • Valladares F, Gianoli E, Saldaña A. 2011. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? Ann Bot-London, 108: 231-239.
  • Van den Driessche R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. Bot Rev, 40: 347-394.
  • Van Heerwaarden LM, Toet S, Aerts R. 2003. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4years of nitrogen fertilization. J Ecol, 91: 1060-1070.
  • Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84: 2191-2199.
  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr, 82: 205-220.
  • Villar R, Merino J. 2001. Comparison of leaf construction costs in woody species with differing leaf life‐spans in contrasting ecosystems. New Phytol, 151: 213-226.
  • Villar R, Ruiz-Robleto J, Ubera JL, Poorter H. 2013. Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. Am J Bot, 100: 1969–1980.
  • Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat, 119: 553-572.
  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry, 13: 87-115.
  • Waring RH, McDonald AJS, Larsson S, Ericsson T, Wiren A, Arwidsson E, Ericsson A, Lohammar T. 1985. Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia, 66: 157-160.
  • Weih M, Karlsson PS. 2001. Growth response of Mountain birch to air and soil temperature: is increasing leaf‐nitrogen content an acclimation to lower air temperature? New Phytol, 150: 147-155.
  • Weiner S, Dove PM. 2003. An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem, 54: 1-29.
  • Weng E, Farrior CE, Dybzinski R, Pacala, SW. 2017. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Global Change Biol, 23: 2482-2498.
  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst, 33: 125–159.
  • White PJ, Broadley MR. 2003. Calcium in plants. Ann Bot-London, 92: 487-511.
  • White PJ, Brown PH. 2010. Plant nutrition for sustainable development and global health. Ann Bot-London, 105: 1073-1080.
  • Williams-Linera G. 2000. Leaf demography and leaf traits of temperate-deciduous and tropical evergreen-broadleaved trees in a Mexican montane cloud forest. Plant Ecol, 149: 233-244.
  • Wilson PJ, Thompson KEN, Hodgson JG. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol, 143: 155-162.
  • Witkowski ETF, Lamont BB, Obbens FJ. 1994. Commercial picking of Banksia hookeriana in the wild reduces subsequent shoot, flower and seed production. J Appl Ecol, 31: 508-520.
  • Wright IJ, Cannon K. 2001. Relationships between leaf lifespan and structural defences in a low‐nutrient, sclerophyll flora. Funct Ecol, 15: 351-359.
  • Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high‐and low‐rainfall and high‐and low‐nutrient habitats. Funct Ecol, 15: 423-434.
  • Wright IJ, Westoby M. 2002. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol, 155: 403-416.
  • Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol, 17: 10-19.
  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley J, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker M, Veneklaas E, Villar R. 2004. The worldwide leaf economics spectrum. Nature, 428: 821-827.
  • Xue LI, Luo S. 2002. Seasonal changes in the nutrient concentrations of leaves and leaf litter in a young Cryptomeria japonica stand. Scand J Forest Res 17: 495-500.
  • Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen, QS. 2005. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J Arid Environ, 63: 191-202.
  • Yuan ZY, Chen HY. 2009. Global‐scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecol Biogeogr, 18: 11-18.

EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI

Year 2018, Volume: 1 Issue: 2, 68 - 82, 01.04.2018

Abstract

Bu çalışmada yüksek yapılı bitkilerde vejetatif bir organ olan yaprağın fiziksel, kimyasal özellikleri ve bunların ekosistem fonksiyonları üzerindeki etkisi açıklanmaya çalışılmıştır. Yapraklar yüksek yapılı bitkilerde önemli ekofizyolojik indikatörlerdir. Fiziksel özelliklerinin yanı sıra yaprak kimyasal içeriği fizyoloji ve fonksiyon ile yakın ilişkilidir. Yapraklar üzerinde yürütülen çalışmalar ekosistem gelişimi ve bitki fonksiyonel özellikleri hakkında değerli bilgiler vermektedir.

References

  • Ackerly DD, Reich PB. 1999. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot, 86: 1272-1281.
  • Ackerly D, Knight C, Weiss S, Barton K, Starmer K. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130: 449-457.
  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns. J Ecol, 84: 597-608.
  • Aerts R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot, 50: 29-37.
  • Aerts R, Chapin III FS. 2000. The mineral nutrition of wild plants revisited. Adv Ecol Res, 30: 1-67.
  • Aerts R, Van der Peijl MJ. 1993. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos: 144-147.
  • Agati G, Brunetti C, Di Ferdinando, M, Ferrini F, Pollastri S, Tattini M. 2013. Functional role of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem, 72: 35–45.
  • Ågren GI. 2004. The C: N: P stoichiometry of autotrophs–theory and observations. Ecol Lett, 7: 185-191.
  • Aponte C, Garcia LV, Maranon T. 2013. Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For Ecol Manage, 309: 36–46.
  • Ares A, Gleason SM. 2007. Foliar nutrient resorption in tree species. In: Scaggs AK, editor. New research on forest ecology. New York: New Yor kSscience Publishers, Inc; p. 1-32.
  • Baptista Haddad CR, Lemos DP, Mazzafera P. 2004. Leaf life span and nitrogen content in semideciduous forest tree species (Croton priscus and Hymenaea courbaril). Sci. Agric. (Piracicaba, Braz.), 61: 462-465.
  • Bardgett RD. 2017. Plant trait-based approaches for interrogating belowground function. Biol Environ, 117B: 1-13.
  • Barron A R, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO. 2009. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci, 2: 42-45.
  • Berg B, Davey MP, De Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, De Santo AV. 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100: 57-73.
  • Bergmann W. 1992. Colour Atlas: Nutritional Disorders of Plants. Jena: Gustav Fischer Verlag.
  • Bhaskar R, Porder S, Balvanera P, Edwards EJ. 2016. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession. Ecology, 97: 1194-1206.
  • Bilgin A, Yalçın E, Kutbay HG, Kök T. 2004. Foliar N and P dynamics of Heracleum platytaenium (Apiaceae) in relation to edaphic characteristics along an elevation gradient in northern Turkey. Ann Bot Fennici, 41: 85-93.
  • Bonneau M. 1988. La diagnostic foliaire. Rev For Fr, 40: 19–28.
  • Bouropoulos N, Weiner S, Addadi L. 2001. Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal‐associated macromolecules. Chem Eur J, 7: 1881-1888.
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol, 173: 677-702.
  • Bruschi P, Grossoni P, Bussotti F. 2003. Within-and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees, 17: 164-172.
  • Bussotti F, Pollastrini M. 2015. Evaluation of leaf features in forest trees: Methods, techniques, obtainable information and limits. Ecol Ind, 52, 219-230.
  • Bussotti F, Prancrazi M, Matteucci G, Gerosa G. 2005. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol, 25: 211-219.
  • Castro-Diez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G. 1997. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees, 11: 127-134.
  • Castro-Díez P, Puyravaud JP, Cornelissen JHC. 2000. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia; 124: 476–486.
  • Chapin FS. 1980. The mineral nutrition of wild plants. Ann Rev Ecol Syst, 11: 233-260.
  • Chapin III FS. 1989. The cost of tundra plant structures: evaluation of concepts and currencies. Am Nat, 133: 1-19.
  • Chapin FS. 1991. Integrated responses of plants to stress. BioScience, 41: 29-36.
  • Chapin III FS, Kedrowski RA. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64: 376-391.
  • Chapin III FS, Moilanen L. 1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72: 709-715.
  • Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol, 30: 239–264.
  • Coley PD. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr, 53: 209-234.
  • Coley PD. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia, 74: 531-536.
  • Crane WJB, Banks JCG. 1992. Accumulation and retranslocation of foliar nitrogen in fertilised and irrigated Pinus radiata. Forest Ecol Manag, 52: 201-223.
  • Cunningham SA, Summerhayes B, Westoby M. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr, 69: 569-588.
  • Davey MP, Berg B, Emmett BA, Rowland P. 2007. Decomposition of oak leaf litter is related to initial litter Mn concentrations. Can J Botany,85: 16-24.
  • De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardget, RD, Berg MP, Cipriotti P, Feld CK, Hering D, da Silva PM, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv, 19: 2873–2893.
  • De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, Van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA. 2009. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol Manag, 258: 1814-1823.
  • De la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R. 2016. Leaf mass per area (lma) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoSONE, 11: e0148788. https://doi.org/10.1371/journal.pone.0148788
  • Diemer M. 1998. Life span and dynamics of leaves of herbaceous perennials in high‐elevation environments:‘news from the elephant’s leg’. Funct Ecol, 12: 413-425.
  • Doğan A, Yalçın E, Sürmen B, Kutbay H G. 2015. Seasonal and altitudinal changes in leaf nutrient concentrations of Hedera helix L.(Araliaceae). Rev Ecol- Terre Vie, 70: 166-181.
  • Duquesnay A, Dupouey JL, Clement A, Ulrich E, Le Tacon F. 2000. Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France. Tree Physiol, 20: 13-22.
  • Eckstein RL, Karlsson PS, Weih M. 1999. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate‐arctic regions. New Phytol, 143: 177-189.
  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauleyk E, Schulz KL, Siemann EH, Sterner RW. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408: 578-580.
  • Escudero A, Del Arco JM, Sanz IC, Ayala J. 1992. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia, 90: 80-87.
  • Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78: 9-19.
  • Field C, Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish T, editor. On the Economy and Form and Function. Cambridge: Cambridge University Press; p. 25-55.
  • Fonseca CR, Overton JM, Collins B, Westoby M. 2000. Shifts in trait‐combinations along rainfall and phosphorus gradients. J Ecol, 88: 964-977.
  • Franceschi VR, Nakata PA. 2005. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol, 56: 41-71.
  • Fujii K, Shibata M, Kitajima K, Ichie T, Kitayama K, Turner BL. 2018. Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol Res, 33: 149-160.
  • Godo GH, Reisenauer HM. 1980. Plant effects on soil manganese availability. Soil Sci Soc Am J, 44: 993-995.
  • Grime JP. 1994. The role of plasticity in exploiting environmental heterogeneity. In: Caldwell MM, Pearcy RW, editors. Exploitation of environmental heterogeneity by plants: ecophysiological processes above-and belowground, London: Academic Press, p. 1-19.
  • Grime JP. 2002. Declining plant diversity: empty niches or functional shifts. J Veg Sci, 13: 457-460.
  • Güsewell S, Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol, 5: 37-61.
  • Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K. 2006. Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecol Manag, 228: 33-39.
  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller IS, White P. 2011. Functions of macronutrients. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. London: Academic Press; p. 135–178.
  • Hayes P, Turner BL, Lambers H, Laliberté E. 2014. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence. J Ecol, 102: 396-410.
  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC. 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85: 1179-1192.
  • He H, Bleby TM, Veneklaas EJ, Lambers H, Kuo J. 2012. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae).Ann Bot-London, 5:887-896.
  • Hobbie SE, Gough L. 2002. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 131: 453-462.
  • Housman DC, Killingbeck KT, Evans RD, Charlet TN, Smith SD. 2012. Foliar nutrient resorption in two Mojave Desert shrubs exposed to Free-Air CO 2 Enrichment (FACE). J Arid Environ, 78: 26-32.
  • Jaffré T. 1979. Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. CR Acad Sci. Série D: Sci Nat, 289: 425-428. Jauregui MA, Reisenauer HM. 1982. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci Soc Am J, 46: 314-317.
  • Kausch W, Haas W. 1966. Ligningehalte der zellwände bei sonnen-und schattenblättern der blutbuche (Fagus sylvatica L. cv. Atropunicea). Naturwissenschaften, 53: 89-89.
  • Kazakou E, Garnier E, Navas ML, Roumet C, Collin C, Laurent G. 2007. Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old‐fields differing in successional status. Funct Ecol, 21: 235-245.
  • Kılıç DD, Kutbay HG, Özbucak T, Hüseyinova R. 2010. Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevational gradient. Ann For Sci, 67: 213.
  • Kikuzawa K. 1995. The basis for variation in leaf longevity of plants. Vegetatio, 121: 89-100.
  • Killingbeck KT, Costigan SA. 1988. Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos, 53: 366-374.
  • Killingbeck KT, May JD, Nyman S. 1990. Foliar senescence in an aspen (Populus tremuloides) clone: the response of element resorption to interramet variation and timing of abscission. Can J Forest Res, 20: 1156-1164.
  • Killingbeck KT. 1992. Inefficient nitrogen resorption in a population of ocotillo (Fouquieria splendens), a drought-deciduous desert shrub. Southwest Nat, 37: 35-42.
  • Killingbeck K T. 1993. Nutrient resorption in desert shrubs. Rev Chil Hist Nat, 66: 345-355.
  • Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77: 1716-1727.
  • Killingbeck KT. 2008. Can zinc influence nutrient resorption? A test with the drought-deciduous desert shrub Fouquieria splendens (ocotillo). Plant Soil, 304: 145-155.
  • Kitayama K, Aiba S, Takyu M, Majalap N, Wagai R. 2004. Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems, 7: 259–274
  • Knecht MF, Göransson A. 2004. Terrestrial plants require nutrients in similar proportions. Tree Physiol, 24: 447-460.
  • Knops JM, Koenig WD. 1997. Site fertility and leaf nutrients of sympatric evergreen and deciduous species of Quercus in central coastal California. Plant Ecol, 130: 121-131.
  • Kobe RK, Lepczyk CA, Iyer M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86: 2780-2792.
  • Kutbay HG, Yalçın E, Bilgin A. 2003. Foliar N and P resorption and foliar nutrient concentrations in canopy and subcanopy of a Fagus orientalis forest. Belg Journ Bot, 136: 35-44.
  • Kutbay HG, Ok T, Bilgin A, Yalçın E. 2005. Seasonal nutrient levels and foliar resorption in Juniperus phoenicea. Belg Journ Bot, 138: 67-75.
  • Lal CB, Annapurna C, Raghubanshi AS, Singh JS. 2001. Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of a dry tropical environment. Can J Bot, 79: 1066-1075.
  • Lamaze T, Pasche F, Pornon A. 2003. Uncoupling nitrogen requirements for spring growth from root uptake in a young evergreen shrub (Rhododendron ferrugineum). New Phytol, 159: 637-644.
  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot-London, 98: 693-713.
  • Lambers H, Raven JA, Shaver GR, Smith SE. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol, 23: 95-103.
  • Lamont BB, Groom PK, Cowling RM. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol, 16: 403-412.
  • Landsberg JJ, Sands P. 2011. Physiological ecology of forest production: principles, processes and models. First ed. Burlington: Academic Press Elsevier Inc.
  • Lopez-Iglesias B, Olmo M, Gallardo A, Villar R. 2014. Short-term effects of litter from 21 woody species on plant growth and root development. Plant Soil, 381: 177–191.
  • Luyssaert S, Raitio H, Mertens J, Vervaeke P, Lust N. 2002. Should foliar cadmium concentrations be expressed on a dry weight or dry ash weight basis. J Environ Monitor, 4: 408-412.
  • Lynch JP, Clair SBS. 2004. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crop Res, 90: 101-115.
  • Manes F, Incerti G, Salvatori E, Vitale M, Ricotta C, Costanza R. 2012. Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecol Appl, 22: 349–360.
  • Marschner P, Crowley DE, Higashi R M. 1997. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil, 189: 11-20.
  • Mellert KH, Göttlein A. 2012. Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res, 131: 1461-1472.
  • Milla R, Castro‐Díez P, Maestro‐Martínez M, Montserrat‐Martí G. 2005. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol, 168: 167-178.
  • Minoletti ML, Boerner REJ. 1994. Drought and site fertility effects on foliar nitrogen and phosphorus dynamics and nutrient resorption by the forest understory shrub Viburnum acerifolium L. Am Midl Nat, 131: 109-119.
  • Monk CD. 1966. An ecological significance of evergreenness. Ecology,47: 504-505.
  • Nakata PA. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci, 164: 901-909.
  • Niinemets Ü. 1999. Research review. Components of leaf dry mass per area–thickness and density–alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol, 144: 35-47.
  • Niinemets Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82: 453-469.
  • Niinemets Ü, Portsmuth A, Truus L. 2002. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species. Ann Bot, 89: 191-204.
  • Niinemets Ü. 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res, 25: 693-714.
  • Norby RJ, Jackson RB. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytol, 147: 3-12.
  • Özbucak TB, Kutbay HG, Kılıç DD, Korkmaz H, Bilgin A, Yalçın E, Apaydın Z. 2008. Foliar resorption of nutrients in selected sympatric tree species in gallery forest Black Sea region. Pol J Ecol, 56: 227-237.
  • Parkhurst DF. 1994. Diffusion of CO2 and other gases inside leaves. New Phytol, 126: 449-479.
  • Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Commun, 4: 2934.
  • Poorter H, De Jong ROB. 1999. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol, 143: 163-176.
  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytol, 182: 565-588.
  • Pregitzer KS, Dickmann DI, Hendrick R, Nguyen PV. 1990. Whole tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiol,7: 79-93.
  • Pugnaire FI, Chapin III FS. 1993. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology, 74: 124-129.
  • Quero JL, Villar R, Marañon T, Zamora R. 2006. Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytol, 2006: 170: 819–834.
  • Rautio P, Fürst A, Stefan K, Raitio H, Bartels U. 2010. Sampling and analysis of needles and leaves. Manual Part XII. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, UNECE, ICP Forests Programme Co-ordinating Centre, Hamburg.
  • Reich PB. 1993. Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: The blind men and the elephant retold'. Funct Ecol, 7: 721-725.
  • Reich PB, Uhl C, Walters MB, Ellsworth DS. 1991. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia, 86: 16-24.
  • Reich PB, Walters MB, Ellsworth DS. 1992. Leaf lifespan in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr, 62: 365-392.
  • Reich PB, Oleksyn J, Tjoelker MG. 1996. Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: a common garden test with field-grown trees. Funct Ecol, 10: 768-776.
  • Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA, 94: 13730-13734.
  • Reich PB, Oleksyn J, Wright IJ. 2009. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160: 207-212.
  • Rejmánková E. 2005. Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytol, 167: 471-482.
  • Richardson CJ, Ferrell GM, Vaithiyanathan P. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology, 80: 2182-2192.
  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL. 2004. Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139: 267-276.
  • Roderick ML, Berry SL, Noble IR. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct Ecol, 14: 423-437.
  • Roem WJ, Berendse F. 2000. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv, 92: 151-161.
  • Ruíz-Robleto J, Villar R. 2005. Relative growth rate and biomass allocation in ten woody species with different leaf longevity using phylogenetic independent contrasts (PICs). Plant Biol, 7: 484–494.
  • Ryser P, Urbas P. 2000. Ecological significance of leaf life span among Central European grass species. Oikos, 91: 41-50.
  • Saur E, Nambiar EKS, Fife DN. 2000. Foliar nutrient retranslocation in Eucalyptus globulus. Tree Physiol, 20: 1105-1112.
  • Sedjo R, Sohngen B. 2012. Carbon sequestration in forests and soils. Ann Rev Res Econ, 4: 127–144.
  • Shane MW, Lambers H. 2005. Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plantarum, 124: 441-450.
  • Shipley B. 1995. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Funct Ecol, 9: 312–319.
  • Soethe N, Lehmann J, Engels C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. J Trop Ecol, 24:, 397.
  • Soh WK, Wright IJ, Bacon KL, Lenz TI, Steinthorsdottir M, Parnell AC, McElwain JC. 2017. A new paleo-leaf economic proxy reveals a shift in ecosystem function in response to global warming at the onset of the Triassic period. Nat Plants, 3: 17104.
  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. NJ: Princeton University Press.
  • Suseela V, Tharayil N, Xing B, Dukes JS. 2015. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Glob Change Biol, 21: 4177-4195.
  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ, 9: 9-17.
  • Trémolières M, Sánchez-Pérez JM, Schnitzler A, Schmitt D. 1998. Impact of river management history on the community structure, species composition and nutrient status in the Rhine alluvial hardwood forest. Plant Ecol, 135: 59–78.
  • Treseder KK, Vitousek PM. 2001. Potential ecosystem-level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawaii. Oecologia, 126: 266-275.
  • Valladares F, Gianoli E, Saldaña A. 2011. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? Ann Bot-London, 108: 231-239.
  • Van den Driessche R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. Bot Rev, 40: 347-394.
  • Van Heerwaarden LM, Toet S, Aerts R. 2003. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4years of nitrogen fertilization. J Ecol, 91: 1060-1070.
  • Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84: 2191-2199.
  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr, 82: 205-220.
  • Villar R, Merino J. 2001. Comparison of leaf construction costs in woody species with differing leaf life‐spans in contrasting ecosystems. New Phytol, 151: 213-226.
  • Villar R, Ruiz-Robleto J, Ubera JL, Poorter H. 2013. Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. Am J Bot, 100: 1969–1980.
  • Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat, 119: 553-572.
  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry, 13: 87-115.
  • Waring RH, McDonald AJS, Larsson S, Ericsson T, Wiren A, Arwidsson E, Ericsson A, Lohammar T. 1985. Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia, 66: 157-160.
  • Weih M, Karlsson PS. 2001. Growth response of Mountain birch to air and soil temperature: is increasing leaf‐nitrogen content an acclimation to lower air temperature? New Phytol, 150: 147-155.
  • Weiner S, Dove PM. 2003. An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem, 54: 1-29.
  • Weng E, Farrior CE, Dybzinski R, Pacala, SW. 2017. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Global Change Biol, 23: 2482-2498.
  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst, 33: 125–159.
  • White PJ, Broadley MR. 2003. Calcium in plants. Ann Bot-London, 92: 487-511.
  • White PJ, Brown PH. 2010. Plant nutrition for sustainable development and global health. Ann Bot-London, 105: 1073-1080.
  • Williams-Linera G. 2000. Leaf demography and leaf traits of temperate-deciduous and tropical evergreen-broadleaved trees in a Mexican montane cloud forest. Plant Ecol, 149: 233-244.
  • Wilson PJ, Thompson KEN, Hodgson JG. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol, 143: 155-162.
  • Witkowski ETF, Lamont BB, Obbens FJ. 1994. Commercial picking of Banksia hookeriana in the wild reduces subsequent shoot, flower and seed production. J Appl Ecol, 31: 508-520.
  • Wright IJ, Cannon K. 2001. Relationships between leaf lifespan and structural defences in a low‐nutrient, sclerophyll flora. Funct Ecol, 15: 351-359.
  • Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high‐and low‐rainfall and high‐and low‐nutrient habitats. Funct Ecol, 15: 423-434.
  • Wright IJ, Westoby M. 2002. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol, 155: 403-416.
  • Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol, 17: 10-19.
  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley J, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker M, Veneklaas E, Villar R. 2004. The worldwide leaf economics spectrum. Nature, 428: 821-827.
  • Xue LI, Luo S. 2002. Seasonal changes in the nutrient concentrations of leaves and leaf litter in a young Cryptomeria japonica stand. Scand J Forest Res 17: 495-500.
  • Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen, QS. 2005. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J Arid Environ, 63: 191-202.
  • Yuan ZY, Chen HY. 2009. Global‐scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecol Biogeogr, 18: 11-18.
There are 159 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Erkan Yalçın

Publication Date April 1, 2018
Submission Date March 7, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Yalçın, E. (2018). EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI. Black Sea Journal of Engineering and Science, 1(2), 68-82.
AMA Yalçın E. EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI. BSJ Eng. Sci. April 2018;1(2):68-82.
Chicago Yalçın, Erkan. “EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI”. Black Sea Journal of Engineering and Science 1, no. 2 (April 2018): 68-82.
EndNote Yalçın E (April 1, 2018) EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI. Black Sea Journal of Engineering and Science 1 2 68–82.
IEEE E. Yalçın, “EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI”, BSJ Eng. Sci., vol. 1, no. 2, pp. 68–82, 2018.
ISNAD Yalçın, Erkan. “EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI”. Black Sea Journal of Engineering and Science 1/2 (April 2018), 68-82.
JAMA Yalçın E. EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI. BSJ Eng. Sci. 2018;1:68–82.
MLA Yalçın, Erkan. “EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI”. Black Sea Journal of Engineering and Science, vol. 1, no. 2, 2018, pp. 68-82.
Vancouver Yalçın E. EKOSİSTEMLERDE YAPRAĞIN EKOLOJİK FONKSİYONLARI. BSJ Eng. Sci. 2018;1(2):68-82.

                                                24890