Research Article
BibTex RIS Cite

Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi

Year 2021, Volume: 4 Issue: 3, 96 - 102, 01.07.2021
https://doi.org/10.34248/bsengineering.899809

Abstract

Bu çalışmanın amacı, bazı domates hatlarının demir noksanlığına dayanıklılıklarının belirlenmesidir. Bu amaçla 445 g kuvars kumu ortamında, 12×3 (hat × demir dozu) şeklinde faktöriyel deneme yürütülmüştür. 12 farklı Tarbio (TB) domates hattına Fe-EDDHA formunda uygulanan demir dozları: Noksan (0,2 µM Fe), yeterli (45 µM Fe), yeterli (100 µM Fe)’dir. Denemede her muamele 3 tekerrürlü yapılmıştır. pH’sı 6,0’a ayarlı bitki besin çözeltisine yukarıda bildirilen demir konsantrasyonlarında Fe-EDDHA ilave edilmiştir. Bu şekilde farklı konsantrasyonlarda demir içeren besin çözeltisi deneme süresince günlük 50 mL olacak şekilde uygulanmıştır. Sera şartlarında deneme 50 gün sürdürülmüştür. Demir noksanlığı şartlarında birinci ana grupta TB-01, TB-10, TB-22 ve TB-65 nolu hatlar; ikinci ana grupta ise TB-14, TB-18, TB-28, TB-31, TB-35, TB-40, TB-90 ve TB-122 nolu hatlar yer almıştır. Birbirinden en uzak hatlar TB-01 ve TB-14 numaralı hatlar olup, bu hatlar karşılaştırıldığında TB-14 numaralı hattın demir noksalığı şartlarında kuru madde miktarı, klorofil-a, klorofil-b, toplam klorofil, karotenoid kapsamları ve yaprakta ferrik redüktaz aktivitesine ilişkin değerlerin TB-01 numaralı hatta göre daha yüksek olduğu tespit edilmiştir. Buna rağmen, demir noksanlığı şartlarında birbirine en uzak hatlar olmakla birlikte, TB-01 nolu hattın aktif demir kapsamının, kökte ferrik redüktaz aktivitesinin ve kök katyon değişim kapasitesinin TB-14 numaralı hatta göre daha yüksek olduğu görülmüştür. Demir noksanlığı şartlarında yetiştirilen domates hatlarından TB-18 ve TB-28 numaralı hatların birbirine en yakın hatlar oldukları da tespit edilmiştir.

Supporting Institution

Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Proje Birimi Koordinasyon Birimi

Project Number

PYO.ZRT.1901.16.003

Thanks

-

References

  • Arnon D. 1949. Copper enzymes in isolated chloroplasts. Plant Physiol, 24: 1-12.
  • Bienfait HF. 1988. Proteins under the control of the gene for Fe efficiency in tomato. Plant Physiol, 88: 785-787.
  • Bienfait HF. 1989. Preventation of stress in iron metabolism of plants. Acta Bot Neerl, 38: 105-129.
  • Chaney RL, Brown JC, Tiffin LO. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol, 50: 208–213.
  • Chaney RL. 1988. Recent progress and needed research in plant Fe nutrition. J Plant Nutr, 11: 1589-1603.
  • Daşgan HY, Römheld V, Çakmak I, Abak K. 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil, 241: 97-104.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48: 909-930.
  • Inskeep WP, Bloom PR. 1987. Soil chemical factors associated with soybeanbchlorosis in calciaquolls of western Minnesota. J Agron, 79: 779–786.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe, S, Matsuhashi S, Takahashi M. 2006. Rice plants take up iron as an Fe+3 phytosiderophore and as Fe+2. Plant J, 45: 335-346.
  • Jolley VD, Cook, KA, Hansen NC, Stevens WB. 1996. Plant physiological responses for genotypic evaluation of iron efficiency in strategy-I and strategy-II plants-A review. J Plant Nutr, 19: 1241-1255.
  • Kacar B, İnal A. 2008. Bitki analizleri, Nobel Yayınları, Ankara, Türkiye, 1. Baskı, pp 891.
  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. 2013. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep, 31: 569-580.
  • Marschner H, Römheld V, Kissel M. 1986. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr, 6: 695-713.
  • Marschner H. 1995. Function of mineral nutrients: micronutrients. In: Mineral nutrition of higher plants. Academic Press, London, United Kingdom, p. 313-324.
  • Ojeda M, Schaffer B, Davies FS. 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr, 27: 1381-1393.
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 80: 175–180.
  • Takkar PN, Kaur NP. 1984. HCl method for Fe+2 estimation to resolve iron chlorosis in plants. J Plant Nutr, 7(1-5): 81-90.
  • Witham FH, Blaydes DF, Devlin RM. 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York.
  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z. 2012. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics, 13: 101. DOI: 10.1186/1471-2164-13-101.

Determining the Resistance of Some Tomato Lines to Iron Deficiency

Year 2021, Volume: 4 Issue: 3, 96 - 102, 01.07.2021
https://doi.org/10.34248/bsengineering.899809

Abstract

The purpose of this study is to determine the resistance of some tomato lines to iron deficiency.
For this purpose, a factorial trial was conducted as 12 × 3 (line × iron dose) in 445 g quartz sand media. Iron doses applied to 12 different Tarbio (TB) tomato lines in the form of Fe-EDDHA are: Deficient (0.2 µM Fe), sufficient (45 µM Fe), sufficient (100 µM Fe). In the experimet, each treatment was done in 3 replications. Fe EDDHA was added to the pH adjusted to 6.0 plant nutrient solution at the iron concentrations reported above. In this way, a nutrient solution containing iron in different concentrations was applied as 50 mL per day during the trial. The experiment continued for 50 days under greenhouse conditions. While lines TB-01, TB-10, TB-22 and TB-65 take place in the first main group under iron deficiency conditions; the second main group included lines TB-14, TB-18, TB-28, TB-31, TB-35, TB-40, TB-90 and TB-122. It has been determined that the lines farthest from each other are lines TB-01 and TB-14. When these lines were compared with each other, it was determined that the values of dry matter content, chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid contents and ferric reductase activity in the leaf under iron deficiency conditions of the line numbered TB-14 were higher than the line number TB-01. On the other hand, active iron content, root ferric reductase activity and root cation exchange capacity of tomato line numbered TB-01 were found to be higher than line TB-14. It was also determined that lines TB-18 and TB-28 of tomato lines grown under iron deficiency conditions were the closest lines to each other.

Project Number

PYO.ZRT.1901.16.003

References

  • Arnon D. 1949. Copper enzymes in isolated chloroplasts. Plant Physiol, 24: 1-12.
  • Bienfait HF. 1988. Proteins under the control of the gene for Fe efficiency in tomato. Plant Physiol, 88: 785-787.
  • Bienfait HF. 1989. Preventation of stress in iron metabolism of plants. Acta Bot Neerl, 38: 105-129.
  • Chaney RL, Brown JC, Tiffin LO. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol, 50: 208–213.
  • Chaney RL. 1988. Recent progress and needed research in plant Fe nutrition. J Plant Nutr, 11: 1589-1603.
  • Daşgan HY, Römheld V, Çakmak I, Abak K. 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil, 241: 97-104.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48: 909-930.
  • Inskeep WP, Bloom PR. 1987. Soil chemical factors associated with soybeanbchlorosis in calciaquolls of western Minnesota. J Agron, 79: 779–786.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe, S, Matsuhashi S, Takahashi M. 2006. Rice plants take up iron as an Fe+3 phytosiderophore and as Fe+2. Plant J, 45: 335-346.
  • Jolley VD, Cook, KA, Hansen NC, Stevens WB. 1996. Plant physiological responses for genotypic evaluation of iron efficiency in strategy-I and strategy-II plants-A review. J Plant Nutr, 19: 1241-1255.
  • Kacar B, İnal A. 2008. Bitki analizleri, Nobel Yayınları, Ankara, Türkiye, 1. Baskı, pp 891.
  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. 2013. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep, 31: 569-580.
  • Marschner H, Römheld V, Kissel M. 1986. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr, 6: 695-713.
  • Marschner H. 1995. Function of mineral nutrients: micronutrients. In: Mineral nutrition of higher plants. Academic Press, London, United Kingdom, p. 313-324.
  • Ojeda M, Schaffer B, Davies FS. 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr, 27: 1381-1393.
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 80: 175–180.
  • Takkar PN, Kaur NP. 1984. HCl method for Fe+2 estimation to resolve iron chlorosis in plants. J Plant Nutr, 7(1-5): 81-90.
  • Witham FH, Blaydes DF, Devlin RM. 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York.
  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z. 2012. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics, 13: 101. DOI: 10.1186/1471-2164-13-101.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ahmet Korkmaz 0000-0001-5595-0618

Elif Boz 0000-0001-9579-025X

Güney Akınoğlu 0000-0003-4624-2876

Project Number PYO.ZRT.1901.16.003
Publication Date July 1, 2021
Submission Date March 19, 2021
Acceptance Date March 31, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Korkmaz, A., Boz, E., & Akınoğlu, G. (2021). Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. Black Sea Journal of Engineering and Science, 4(3), 96-102. https://doi.org/10.34248/bsengineering.899809
AMA Korkmaz A, Boz E, Akınoğlu G. Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. BSJ Eng. Sci. July 2021;4(3):96-102. doi:10.34248/bsengineering.899809
Chicago Korkmaz, Ahmet, Elif Boz, and Güney Akınoğlu. “Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”. Black Sea Journal of Engineering and Science 4, no. 3 (July 2021): 96-102. https://doi.org/10.34248/bsengineering.899809.
EndNote Korkmaz A, Boz E, Akınoğlu G (July 1, 2021) Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. Black Sea Journal of Engineering and Science 4 3 96–102.
IEEE A. Korkmaz, E. Boz, and G. Akınoğlu, “Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”, BSJ Eng. Sci., vol. 4, no. 3, pp. 96–102, 2021, doi: 10.34248/bsengineering.899809.
ISNAD Korkmaz, Ahmet et al. “Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”. Black Sea Journal of Engineering and Science 4/3 (July 2021), 96-102. https://doi.org/10.34248/bsengineering.899809.
JAMA Korkmaz A, Boz E, Akınoğlu G. Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. BSJ Eng. Sci. 2021;4:96–102.
MLA Korkmaz, Ahmet et al. “Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”. Black Sea Journal of Engineering and Science, vol. 4, no. 3, 2021, pp. 96-102, doi:10.34248/bsengineering.899809.
Vancouver Korkmaz A, Boz E, Akınoğlu G. Bazı Domates Hatlarının Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. BSJ Eng. Sci. 2021;4(3):96-102.

                                                24890