Research Article
BibTex RIS Cite

Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal

Year 2023, Volume: 6 Issue: 4, 486 - 501, 15.10.2023
https://doi.org/10.34248/bsengineering.1347169

Abstract

Legume wastes, pinto bean peel (PBP) and pea shell (PS), were hydrothermally carbonized in subcritical water at various temperatures (200-240 °C) with the aim of obtaining a solid fuel, hydrochar. Fuel characteristics and chemical properties of hydrochars were determined by standard fuel analysis methods. Hydrochar yield decreased sharply with the increase of temperature due to the enhanced degradation of legume wastes. The weight percent of initial carbon in the legume wastes retained in the obtained hydrochars was lower than those in the literature due to the low hydrochar yields. The effect of temperature on carbon content and hence higher heating value (HHV) of hydrochar became noticable at 240°C. As a result of this effect, bituminous coal-like and lignite-like hydrochars with HHV of 31.2 and 28.1 MJ.kg-1were obtained from PBP and PS, respectively. Hydrochars obtained at 220 °C were chemically activated with ZnCl2 to produce activated carbons (PBP-AHC and PS-AHC). The activated carbons were characterized by elemental analysis, FTIR spectroscopy, BET surface area analysis and Scanning Electron Microscopy (SEM). BET surface area, total pore volume, and mesopore volume of PS-HC were determined as 1205 m2. g-1, 0.686 m3. g-1 and 0.144 m3. g-1, respectively. PBP-AHC was found to have higher BET surface area (1350 m2. g-1), total pore volume (0.723 m3. g-1), and mesopore volume (0.249 m3. g-1) than PS-AHC. Activated carbons were tested as adsorbent for removal of amoxicillin (AMX) from aqueous solutions with the batch adsorption studies carried out at different initial concentrations, adsorbent dosage, and contact time. The compatibility of the adsorption data with the Langmuir and Freundlich isotherm models was checked to determine the adsorption capacity of activated carbons. The maximum Langmuir adsorption capacity (Qmax) was calculated as 188.7 and 70.9 mg. g-1 for PBP-AHC and PS-AHC, respectively. Adsorption kinetic analysis revealed that AMX adsorption on PBP-AHC and PS-AHC best fits with the pseudo-second order kinetic model. AMX adsorption was found to be faster on PBP-AHC than PS-AHC due to its higher surface area and more mesoporous character. ZnCl2 activation of PBP-derived hydrochar produced a potential adsorbent for amoxicillin removal.

References

  • Abazari R, Mahjoub AR. 2018. Ultrasound-assisted synthesis of Zinc(II)-based metal organic framework nanoparticles in the presence of modulator for adsorption enhancement of 2,4-dichlorophenol and amoxicillin. Ultrason Sonochem, 42: 577-584. DOI: 10.1016/j.ultsonch.2017.12.027.
  • Ajala OO, Akinnawo SO, Bamisaye A, Adedipe DT, Adesina MO, Okon-Akan OA, Adebusuyi TA, Ojedokun AT, Adegoke KA, Bello OS. 2023. Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents. RSC Adv, 13: 4678-4712 DOI:10.1039/d2ra06436g.
  • Akogun OA, Waheed MA. 2019. Property upgrades of some raw Nigerian biomass through torrefaction pre-treatment- a review. J Phys, 1378: 032026. DOI:10.1088/1742-6596/1378/3/032026.
  • Angın D, Köse TE, Selengil U. 2013a. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Appl Surf Sci, 280: 705-710. DOI: 10.1016/j.apsusc.2013.05.046.
  • Angın D, Altintig E, Köse TE. 2013b. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol, 148: 542-549. DOI: 10.1016/j.biortech.2013.08.164.
  • Araújo LK, Albuquerque AA, Ramos WC, Santos AT, Carvalho SH, Soletti JI, Bispo MD. 2021. Elaeis guineensis-activated carbon for methylene blue removal: adsorption capacity and optimization using CCD-RSM, Environ Dev Sustain 1-19. DOI: 10.1016/j.crgsc.2022.100325.
  • Balarak D, Mahdavi Y, Maleki A, Daraei H, Sadeghi S. 2016. Studies on the removal of amoxicillin by single walled carbon nanotubes. Br J Pharmaceut Res, 10(4): 1-9. DOI: 10.9734/BJPR/2016/24150.
  • Balmuk G, Cay H, Duman G, Kantarli IC, Yanik J. 2023. Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance. Energy, 278:127803. DOI: 10.1016/j.energy.2023.127803.
  • Bote JG, Castasus NFP, Layug KM, Vicente RZ, Yambao PJT, Rubi RVC, Roque EC, Olay JG. 2023. Production of hydrochar using pineapple (Ananas comosus) peelings via hydrothermal carbonization, Mater Today-Proc. Article in press. DOI:10.1016/j.matpr.2023.05.464.
  • Budyanto S, Soedjono S, Irawaty W, Indraswati N. 2008. Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. J Environ Prot Sci, 2: 72-80.
  • Channiwala SA, Parikh PP. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8): 1051-1063. DOI: 10.1016/S0016-2361(01)00131-4.
  • Chayid M, Ahmed MJ. 2015. Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies. J Environ Chem Eng, 3: 1592-1601. DOI: 10.1016/j.jece.2015.05.021.
  • Chen J, Zhang L, Yang G, Wang Q, Li R, Lucia LA. 2017. Preparation and characterization of activated carbon from hydrochar by phosphoric acid activation and its adsorption performance in prehydrolysis liquor. BioRes, 12(3): 5928-5941. DOI: 10.15376/biores.12.3.5928-5941.
  • Ciolkosz D, Wallace R. 2011. A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod Bior, 5(3): 317-329. DOI: 10.1002/bbb.275.
  • De Franco MAE, de Carvalho CB, Bonetto MM, de Pelegrini Soares R, Feris LA. 2017. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J Clean Prod, 161: 947-956. DOI: 10.1016/j.jclepro.2017.05.197.
  • De Sa IC, De Oliveira P, Nossol E, Borges PHS, Lepri FG, Semaan FS, Pacheco WF. 2022. Modified dry bean pod waste (Phaseolus vulgaris) as a biosorbent for fluorescein removal from aqueous media: batch and fixed bed studies. J Hazard Mater, 424: 127723. DOI: 10.1016/j.jhazmat.2021.127723.
  • Dong X, Guo S, Wang H, Wang Z, Gao X. 2019. Physicochemical characteristics and FTIR-derived structural parameters of hydrochar produced by hydrothermal carbonisation of pea pod (Pisum sativum Linn.) waste. Biomass Conv Bioref, 9: 531-540. DOI: 10.1007/s13399-018-0363-1.
  • Edet UA, Ifelebuegu AO. 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6): 665. DOI: 10.3390/pr8060665.
  • Elaigwu, SE, Rocher V, Kyriakou G, Greenway GM. 2014. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis Africana Shell. J Ind Eng Chem, 20: 3467-73. DOI: doi.org/10.1016/j.micromeso.2012.08.006.
  • Elmolla ES, Chaudhuri M. 2010. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater, 173: 445-449. DOI: 10.1016/j.jhazmat.2009.08.104.
  • Eom H, Kim J, Nam I, Bae S. 2021. Recycling black tea waste biomass as activated porous carbon for long life cycle supercapacitor electrodes. Materials, 14(21): Article 6592. DOI: 10.3390/ma14216592.
  • Ercan B, Alper K, Ucar S, Karagoz S. 2023. Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis. Journal of the Energy Institute,109:101298. DOI: 10.1016/j.joei.2023.101298.
  • Fazelirad H, Ranjbar M, Taher MA, Sargazi G. 2015. Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J Ind Eng Chem, 21: 889-892. DOI: 10.1016/j.jiec.2014.04.028.
  • Fernandez ME, Ledesma B, Roman S, Bonelli PR, Cukierman AL. 2015. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour Technol,183: 221-228. DOI: 10.1016/j.biortech.2015.02.035.
  • Flora JFR, Lu X, Li L, Flora JRV, Berge ND. 2013. The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar. Chemosphere, 93: 1989-96. DOI: 10.1016/j.chemosphere.2013.07.018.
  • Funke A, Reebs F, Kruse A. 2013. Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol, 115: 261-269. DOI: 10.1016/j.fuproc.2013.04.020.
  • Garoma T, Umamaheshwar SH, Mumper A. 2010. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 79: 814-20. DOI: 10.1016/j.chemosphere.2010.02.060.
  • Goswami R, Shim J, Deka S, Kumari D, Kataki R, Kumar M. 2016. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecol Eng, 97: 444-451. DOI: 10.1016/j.ecoleng.2016.10.007.
  • Hadjittofi L, Prodromou M, Pashalidis I. 2014. Activated biochar derived from cactus fibres – Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour Technol, 159: 460-464. DOI: 10.1016/j.biortech.2014.03.073.
  • Hamid SBA, Chowdhury ZZ, Zain SM. 2014. Base catalytic approach: A promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu (II) ions in single solute system. Materials, 7 (4): 2815-2832. DOI: 10.3390/ma7042815.
  • Hamid NA, Subramaniam T. 2022. Physicochemical properties of hydrochars produced from Khaya senegalensis leaves using hydrothermal carbonisation. Journal of Engineering Science and Technology, 17(3): 1781-91.
  • Hayati B, Maleki A, Najafi F, Gharibi F, McKay G, Gupta VK, Puttaiah SH, Marzban N. 2018. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem Eng J, 346: 258-270. DOI: 10.1016/j.cej.2018.03.172.
  • Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, Von Keitz MG, Valentas KJ. 2010. Hydrothermal carbonization of microalgae. Biomass Bioenergy, 34: 875-882. DOI: 10.1016/j.biombioe.2010.01.032.
  • Heilmann, SM, Jader LR, Sadowsky MJ, Schendel FJ, Von Keitz MG, Valentas KJ. 2011. Hydrothermal carbonization of distiller's grains. Biomass Bioenergy, 35: 2526-2533. DOI: 10.1016/j.biombioe.2011.02.022
  • Hoffmann V, Jung D, Zimmermann J, Rodriquez Correa C, Elleuch A. 2019. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors (EDLCs) and direct carbon fuel cells (DCFCs). Materials, 12(10): 1-33. DOI: 10.3390/ma12101703.
  • Horikawa T, Kitakaze Y, Sekida T, Hayashi J, Katoh M. 2010. Characteristics and humidity control capacity of activated carbon from bamboo. Bioresour Technol, 101: 3964-3969. DOI: 10.1016/j.biortech.2010.01.032
  • Huang GG, Liu YF, Wu XX, Cai JJ. 2019. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater, 34(3): 247-257. DOI: 10.1016/S1872-5805(19)60014-4
  • Huff MD, Lee JW. 2016. Biochar-surface oxygenation with hydrogen peroxide. J Environ Manage, 165: 17-21. DOI: 10.1016/j.jenvman.2015.08.046.
  • Iriarte-Velasco U, Sierra I, Zudaire L, Ayastuy JL. 2016. Preparation of a porous biochar from the acid activation of pork bones. Food Bioprod Process, 98: 341-353. DOI: 10.1016/j.fbp.2016.03.003.
  • Islam MA, Benhouria A, Asif M, Hameed BH. 2015. Methylene blue adsorption on factory- rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. J Taiwan Inst Chem Eng, 52: 57-64. DOI: doi.org/10.1016/j.jtice.2015.02.010.
  • Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH. 2017. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manage, 203: 237-244. DOI: 10.1016/j.jenvman.2017.07.029.
  • Jain A, Jayaraman S, Balasubramanian R, Srinivasan MP. 2014. Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. J Mater Chem A, 2: 520-528. DOI: 10.1039/C3TA12648J.
  • Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. 2021. Surfactant adsorption isotherms: a review. ACS Omega, 6 (48): 32342-348. DOI: 10.1021/acsomega.1c04661.
  • Kalderis D, Görmez Ö, Saçlı B, Çalhan SD, Gözmen B. 2023. Valorization of loquat seeds by hydrothermal carbonization for the production of hydrochars and aqueous phases as added-value products. J Environ Manage, 344: 118612. DOI: 10.1016/j.jenvman.2023.118612.
  • Kambo HS, Dutta A. 2015. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manage, 105: 746-755. DOI: /10.1016/j.enconman.2015.08.031.
  • Kanchanatip E, Prasertsung N, Thasnas N, ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Grisdanurak N, Wantala K. 2022. Valorization of cannabis waste via hydrothermal carbonization: solid fuel production and characterization. Environ Sci Pollut Res. DOI:10.1007/s11356-022-24123-0
  • Kantarli IC, Kabadayi A, Ucar S, Yanik, J. 2016. Conversion of poultry wastes into energy feedstocks. Waste Manage, 56: 530-539. DOI: 10.1016/j.wasman.2016.07.019.
  • Kantarli IC. 2023. Conversion of brewed tea waste into hydrochar and activated carbon. Int J Glob Warming, 29(1-2):1-15. DOI: 10.1504/IJGW.2023.128832.
  • Kerkez-Kuyumcu O, Bayazit SS, Salam MA. 2016. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J Ind Eng Chem, 36:198-205. DOI: 10.1016/j.jiec.2016.01.040.
  • Laginhas C, Valente Nabais JM, Titirici MM. 2016. Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation. Microporous and Mesoporous Mater, 226: 125-132. DOI: doi.org/10.1016/j.micromeso.2015.12.047.
  • Laksaci H, Belhamdi B, Khelif O, Khelif A, Trari M. 2023. Elimination of amoxicillin by adsorption on coffee waste based activated carbon. J Mol Struct, 1274: 134500.
  • Larsson SH, Rudolfsson M, Nordwaeger M, Olofsson I, Samuelsson R. 2013. Effect of moisture content, torrefaction temperature and die temperature in pilot scale pelletizing of torrefied Norway spruce. App Energy, 102: 827-832. DOI: 10.1016/j.apenergy.2012.08.046.
  • Limousy L, Ghouma I, Ouederni A, Jeguirim M. 2017. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ Sci Pollut Res, 24 (11): 9993-10004. DOI: 10.1007/s11356-016-7404-8.
  • Li H, Hu J, Cao Y, Li X, Wang X. 2017. Development and assessment of a functional activated fore-modified bio-hydrochar for amoxicillin removal. Bioresour Technol, 246:168-175. DOI: 10.1016/j.biortech.2017.06.112.
  • Lim WC, Srinivasakannan C, Balasubramanian N. 2010. Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J Anal Appl Pyrolysis, 88: 181-186. DOI: 10.1016/j.jaap.2010.04.004
  • Liu Y, Zhu X, Qian F, Zhang S, Chen J. 2014. Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Adv, 4(109): 63620-63626. DOI: 10.1039/c4ra11815d.
  • Liu H, Hu Z, Liu H, Xie H, Lu S, Wang Q, Zhang J. 2016. Adsorption of Amoxicillin by Mn-impregnated activated carbons: performance and mechanisms. RSC Adv, 6(14): 11454-11460. DOI: 10.1039/C5RA23256B.
  • Maitlo G, Ali I, Mangi KH, Ali S, Maitlo HA, Unar IN, Pirzada AM. 2022. Thermochemical conversion of biomass for syngas production: current status and future trends. Sustainability, 14(5):2596. DOI: 10.3390/su14052596.
  • Makela M, Benavente V, Fullana A. 2015. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy,155:576-84. DOI: 10.1016/j.apenergy.2015.06.022.
  • Martínez-Castaño M, Mejía Díaz DP, Contreras-Calderón J, Gallardo Cabrera C. 2020. Physicochemical properties of bean pod (Phaseolus vulgaris) flour and its potential as a raw material for the food industry. Revista Facultad Nacional de Agronomía Medellín, 73(2): 9179-9187. DOI: 10.15446/rfnam.v73n2.81564.
  • Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ, Zapata-Revilla MA, Tenorio-Sanz, MD. 2010. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT- Food Sci Technol, 43:1467-1470. DOI: 10.1016/j.lwt.2010.05.008.
  • McGaughy K, Toufiq Reza M. 2018. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conv Bioref, 8: 283-292. DOI: 10.1007/s13399-017-0276-4.
  • Missaoui A, Bostyn S, Belandria V, Cagnon B, Sarh B, Gokalp I. 2017. Hydrothermal carbonization of dried olive pomace: energy potential and process performances. J Anal Appl Pyrolysis,128: 281-90. DOI: 10.1016/j.jaap.2017.09.022.
  • Moradi SE. 2015. Highly efficient removal of amoxicillin from water by magnetic graphene oxide adsorbent. Chem Bull ‘Politehnica’University Timisoara, Rom Ser Chem Environ Eng, 60: 41-48.
  • Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. 2013. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem Eng J, 217: 119-128. DOI:10.1016/j.cej.2012.11.069.
  • Nawaz A, Kumar P. 2023. Impact of temperature severity on hydrothermal carbonization:fuel properties, kinetic and thermodynamic parameters. Fuel, 336:127166. DOI: 10.1016/j.fuel.2022.127166.
  • Nirmaladevi S, Palanisamy PN. 2021. Adsorptive behavior of biochar and zinc chloride activated hydrochar prepared from Acacia leucophloea wood sawdust: kinetic equilibrium and thermodynamic studies. Desalination Water Treat, 209: 170-181. DOI: 10.5004/dwt.2021.26515
  • Odeh AO. 2015. Comprehensive conventional analysis of southern hemisphere coal chars of different ranks for fixed bed gasification. Global Journals of Research in Engineering, 15(4): 5-16.
  • Pala M, Kantarli IC, Buyukisik HB, Yanik J. 2014. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol, 161: 255-262. DOI: 10.1016/j.biortech.2014.03.052.
  • Pari G, Darmawan S, Bambang Prihandoko B. 2014. Porous carbon spheres from hydrothermal carbonization and koh activation on cassava and tapioca flour raw material. Procedia Environmental Sciences, 20: 342-51. DOI: 10.1016/j.proenv.2014.03.043.
  • Parshetti GK, Chowdhury S, Balasubramanian R. 2014. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour Technol, 161: 310-319. DOI: 10.1016/j.biortech.2014.03.087.
  • Pavkov I, Radojčin M, Stamenković Z, Bikić S, Tomić M, Bukurov M, Despotović B. 2022. Hydrothermal carbonization of agricultural biomass: Characterization of hydrochar for energy production. Solid Fuel Chem, 56: 225–235. DOI: 10.3103/S0361521922030077.
  • Petrovic´ JT, Stojanovic´ MD, Milojkovic´ JV, Petrovic´ MS, Šoštaric´ TD, Lauševic´ MD, Mihajlovic´ ML. 2016. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution. J Environ Manage, 182: 292-300. DOI: 10.1016/j.jenvman.2016.07.081.
  • Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Júnior OOS, Visentainer JV, Almeida VC. 2016. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J; 288: 778-788.
  • Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W, Huhnke RL. 2013. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6 (8): 3972-3986. DOI: 10.3390/en6083972
  • Rashid RA, Jawad AH, Ishak MAM, Kasim NN. 2016. KOH-activated carbon developed from biomass waste: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue uptake. Desalin Water Treat, 57:27226-27236. DOI: 10.1080/19443994.2016.1167630.
  • Redding AM, Cannon FS, Snyder SA, Vanderford BJ. 2009. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons. Water Res, 43(15): 3849-3861. DOI: 10.1016/j.watres.2009.05.026.
  • Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G. 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage, 109: 61-69. DOI: 10.1016/j.jenvman.2012.04.047.
  • Rodrigues DLC, Machado FM, Osorio AG, Azevedo CFD, Lima EC, Silva RSD, Lima DR, FM Gonçalves. 2020. Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies. Environ Sci Pollut Res, 27: 41394-41404. DOI: 10.1007/s11356-020-09583-6.
  • Roman S, Nabais JMV, Ledesma B, Gonzalez, JF, Laginhas C, Titrici MM. 2013. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous and Mesoporous Mater, 165: 127-133. DOI: 10.1016/j.micromeso.2012.08.006.
  • Satpathy SK, Tabil LG, Meda V, Naik SN, Prasad R, 2014. Torrefaction of wheat and barley straw after microwave heating. Fuel, 124: 269-278. DOI: 10.1016/j.fuel.2014.01.102.
  • Saucier C, Karthickeyan P, Ranjithkumar V, Lima EC, Dos Reis GS, De Brum IAS. 2017. Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ Sci Pollut Res, 2017, 24(6): 5918-5932. DOI:10.1007/s11356-016-8304-7.
  • Serna-Galvis EA, Ferraro F, Silva-Agredo J, Torres-Palma RA. 2017. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res, 122: 128-138. DOI: 10.1016/j.watres.2017.05.065.
  • Sevilla M, Fuertes AB. 2011. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci, 4: 1765-71. DOI: 10.1039/C0EE00784F.
  • Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B. 2011. Sorption of bisphenol-A, alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Biroresour Technol, 102: 5757-63. DOI: 10.1016/j.biortech.2011.03.038.
  • Swan NB, Zaini MAA. 2019. Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecol Chem Eng S, 26(1):119-132. DOI: 10.1515/eces-2019-0009.
  • Tran TH, Le HH, Pham TH, Nguyen DT, La DD, Chang SW, Lee SM, Chung,WJ, Nguyen DD. 2021. Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods. J Environ Chem Eng, 9: 105362. DOI:10.1016/j.jece.2021.105362.
  • Unutkan T, Bakırdere S, Keyf S. 2018. Development of an analytical method for the determination of amoxicillin in commercial drugs and wastewater samples, and assessing its stability in simulated gastric digestion. J Chromatogr Sci, 56(1): 36-40. DOI: 10.1093/chromsci/bmx078.
  • Vassilev SV, Vassileva CG, Vassilev VS. 2015. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158: 330-350, DOI:10.1016/j.fuel.2015.05.050.
  • Verma N, Bansal MC, Kumar V. 2011. Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. BioResource, 6: 1505-1519.
  • Wang T, Zhai Y, Zhu Y, Li C, Zeng G. 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev, 90: 223–47. DOI: doi.org/10.1016/j.rser.2018.03.071.
  • Wu S, Wang Q, Cui D, Sun H, H Yin, Xu F, Wang Z. 2023. Evaluation of fuel properties and combustion behaviour of hydrochar derived from hydrothermal carbonisation of agricultural wastes, Journal of the Energy Institute, 108: 101209. DOI:10.1016/j.joei.2023.101209.
  • Yan W, Acharjee TC, Coronella CJ, Victor R, Vásquez VR. 2009. Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy, 28: 435-440. DOI: 10.1002/ep.10385.
  • Yang X, Wan Y, Zheng Y, F He, Z Yu, Huang J, Wang H, YS Ok, Jiang Y, Gao B. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem Eng J, 366: 608-621. DOI: 10.1016/j.cej.2019.02.119.
  • Yi H, Nakabayashi K, Yoon SH, Miyawaki J. 2021. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 183: 735-742. DOI: 10.1016/j.carbon.2021.07.061.
  • Yu F, Li Y, Han S, Ma J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 153: 365-385. DOI: 10.1016/j.chemosphere.2016.03.083.
  • Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J. 2014. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour Technol, 154: 209-214. DOI: 10.1016/j.biortech.2013.12.019.
  • Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R. 2010. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater, 179(1-3): 1042-1048. DOI: 10.1016/j.jhazmat.2010.03.110.

Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal

Year 2023, Volume: 6 Issue: 4, 486 - 501, 15.10.2023
https://doi.org/10.34248/bsengineering.1347169

Abstract

Legume wastes, pinto bean peel (PBP) and pea shell (PS), were hydrothermally carbonized in subcritical water at various temperatures (200-240 °C) with the aim of obtaining a solid fuel, hydrochar. Fuel characteristics and chemical properties of hydrochars were determined by standard fuel analysis methods. Hydrochar yield decreased sharply with the increase of temperature due to the enhanced degradation of legume wastes. The weight percent of initial carbon in the legume wastes retained in the obtained hydrochars was lower than those in the literature due to the low hydrochar yields. The effect of temperature on carbon content and hence higher heating value (HHV) of hydrochar became noticable at 240°C. As a result of this effect, bituminous coal-like and lignite-like hydrochars with HHV of 31.2 and 28.1 MJ.kg-1were obtained from PBP and PS, respectively. Hydrochars obtained at 220 °C were chemically activated with ZnCl2 to produce activated carbons (PBP-AHC and PS-AHC). The activated carbons were characterized by elemental analysis, FTIR spectroscopy, BET surface area analysis and Scanning Electron Microscopy (SEM). BET surface area, total pore volume, and mesopore volume of PS-HC were determined as 1205 m2. g-1, 0.686 m3. g-1 and 0.144 m3. g-1, respectively. PBP-AHC was found to have higher BET surface area (1350 m2. g-1), total pore volume (0.723 m3. g-1), and mesopore volume (0.249 m3. g-1) than PS-AHC. Activated carbons were tested as adsorbent for removal of amoxicillin (AMX) from aqueous solutions with the batch adsorption studies carried out at different initial concentrations, adsorbent dosage, and contact time. The compatibility of the adsorption data with the Langmuir and Freundlich isotherm models was checked to determine the adsorption capacity of activated carbons. The maximum Langmuir adsorption capacity (Qmax) was calculated as 188.7 and 70.9 mg. g-1 for PBP-AHC and PS-AHC, respectively. Adsorption kinetic analysis revealed that AMX adsorption on PBP-AHC and PS-AHC best fits with the pseudo-second order kinetic model. AMX adsorption was found to be faster on PBP-AHC than PS-AHC due to its higher surface area and more mesoporous character. ZnCl2 activation of PBP-derived hydrochar produced a potential adsorbent for amoxicillin removal.

Thanks

The author thanks Prof. Dr. Jale Yanik for granting permission to use Industrial Organic Laboratory facilities at Chemistry Department, Ege University, Turkey. The author would like to acknowledge TAUM (Erciyes University) and IYTE-MAM (Izmir Institute of Technology) for BET analysis, ODUMARAL (Ordu University) for elemental analysis, and IYTE-MAM (Izmir Institute of Technology) for SEM images.

References

  • Abazari R, Mahjoub AR. 2018. Ultrasound-assisted synthesis of Zinc(II)-based metal organic framework nanoparticles in the presence of modulator for adsorption enhancement of 2,4-dichlorophenol and amoxicillin. Ultrason Sonochem, 42: 577-584. DOI: 10.1016/j.ultsonch.2017.12.027.
  • Ajala OO, Akinnawo SO, Bamisaye A, Adedipe DT, Adesina MO, Okon-Akan OA, Adebusuyi TA, Ojedokun AT, Adegoke KA, Bello OS. 2023. Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents. RSC Adv, 13: 4678-4712 DOI:10.1039/d2ra06436g.
  • Akogun OA, Waheed MA. 2019. Property upgrades of some raw Nigerian biomass through torrefaction pre-treatment- a review. J Phys, 1378: 032026. DOI:10.1088/1742-6596/1378/3/032026.
  • Angın D, Köse TE, Selengil U. 2013a. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Appl Surf Sci, 280: 705-710. DOI: 10.1016/j.apsusc.2013.05.046.
  • Angın D, Altintig E, Köse TE. 2013b. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol, 148: 542-549. DOI: 10.1016/j.biortech.2013.08.164.
  • Araújo LK, Albuquerque AA, Ramos WC, Santos AT, Carvalho SH, Soletti JI, Bispo MD. 2021. Elaeis guineensis-activated carbon for methylene blue removal: adsorption capacity and optimization using CCD-RSM, Environ Dev Sustain 1-19. DOI: 10.1016/j.crgsc.2022.100325.
  • Balarak D, Mahdavi Y, Maleki A, Daraei H, Sadeghi S. 2016. Studies on the removal of amoxicillin by single walled carbon nanotubes. Br J Pharmaceut Res, 10(4): 1-9. DOI: 10.9734/BJPR/2016/24150.
  • Balmuk G, Cay H, Duman G, Kantarli IC, Yanik J. 2023. Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance. Energy, 278:127803. DOI: 10.1016/j.energy.2023.127803.
  • Bote JG, Castasus NFP, Layug KM, Vicente RZ, Yambao PJT, Rubi RVC, Roque EC, Olay JG. 2023. Production of hydrochar using pineapple (Ananas comosus) peelings via hydrothermal carbonization, Mater Today-Proc. Article in press. DOI:10.1016/j.matpr.2023.05.464.
  • Budyanto S, Soedjono S, Irawaty W, Indraswati N. 2008. Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. J Environ Prot Sci, 2: 72-80.
  • Channiwala SA, Parikh PP. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8): 1051-1063. DOI: 10.1016/S0016-2361(01)00131-4.
  • Chayid M, Ahmed MJ. 2015. Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies. J Environ Chem Eng, 3: 1592-1601. DOI: 10.1016/j.jece.2015.05.021.
  • Chen J, Zhang L, Yang G, Wang Q, Li R, Lucia LA. 2017. Preparation and characterization of activated carbon from hydrochar by phosphoric acid activation and its adsorption performance in prehydrolysis liquor. BioRes, 12(3): 5928-5941. DOI: 10.15376/biores.12.3.5928-5941.
  • Ciolkosz D, Wallace R. 2011. A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod Bior, 5(3): 317-329. DOI: 10.1002/bbb.275.
  • De Franco MAE, de Carvalho CB, Bonetto MM, de Pelegrini Soares R, Feris LA. 2017. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J Clean Prod, 161: 947-956. DOI: 10.1016/j.jclepro.2017.05.197.
  • De Sa IC, De Oliveira P, Nossol E, Borges PHS, Lepri FG, Semaan FS, Pacheco WF. 2022. Modified dry bean pod waste (Phaseolus vulgaris) as a biosorbent for fluorescein removal from aqueous media: batch and fixed bed studies. J Hazard Mater, 424: 127723. DOI: 10.1016/j.jhazmat.2021.127723.
  • Dong X, Guo S, Wang H, Wang Z, Gao X. 2019. Physicochemical characteristics and FTIR-derived structural parameters of hydrochar produced by hydrothermal carbonisation of pea pod (Pisum sativum Linn.) waste. Biomass Conv Bioref, 9: 531-540. DOI: 10.1007/s13399-018-0363-1.
  • Edet UA, Ifelebuegu AO. 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6): 665. DOI: 10.3390/pr8060665.
  • Elaigwu, SE, Rocher V, Kyriakou G, Greenway GM. 2014. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis Africana Shell. J Ind Eng Chem, 20: 3467-73. DOI: doi.org/10.1016/j.micromeso.2012.08.006.
  • Elmolla ES, Chaudhuri M. 2010. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater, 173: 445-449. DOI: 10.1016/j.jhazmat.2009.08.104.
  • Eom H, Kim J, Nam I, Bae S. 2021. Recycling black tea waste biomass as activated porous carbon for long life cycle supercapacitor electrodes. Materials, 14(21): Article 6592. DOI: 10.3390/ma14216592.
  • Ercan B, Alper K, Ucar S, Karagoz S. 2023. Comparative studies of hydrochars and biochars produced from lignocellulosic biomass via hydrothermal carbonization, torrefaction and pyrolysis. Journal of the Energy Institute,109:101298. DOI: 10.1016/j.joei.2023.101298.
  • Fazelirad H, Ranjbar M, Taher MA, Sargazi G. 2015. Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J Ind Eng Chem, 21: 889-892. DOI: 10.1016/j.jiec.2014.04.028.
  • Fernandez ME, Ledesma B, Roman S, Bonelli PR, Cukierman AL. 2015. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour Technol,183: 221-228. DOI: 10.1016/j.biortech.2015.02.035.
  • Flora JFR, Lu X, Li L, Flora JRV, Berge ND. 2013. The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar. Chemosphere, 93: 1989-96. DOI: 10.1016/j.chemosphere.2013.07.018.
  • Funke A, Reebs F, Kruse A. 2013. Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol, 115: 261-269. DOI: 10.1016/j.fuproc.2013.04.020.
  • Garoma T, Umamaheshwar SH, Mumper A. 2010. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 79: 814-20. DOI: 10.1016/j.chemosphere.2010.02.060.
  • Goswami R, Shim J, Deka S, Kumari D, Kataki R, Kumar M. 2016. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecol Eng, 97: 444-451. DOI: 10.1016/j.ecoleng.2016.10.007.
  • Hadjittofi L, Prodromou M, Pashalidis I. 2014. Activated biochar derived from cactus fibres – Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour Technol, 159: 460-464. DOI: 10.1016/j.biortech.2014.03.073.
  • Hamid SBA, Chowdhury ZZ, Zain SM. 2014. Base catalytic approach: A promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu (II) ions in single solute system. Materials, 7 (4): 2815-2832. DOI: 10.3390/ma7042815.
  • Hamid NA, Subramaniam T. 2022. Physicochemical properties of hydrochars produced from Khaya senegalensis leaves using hydrothermal carbonisation. Journal of Engineering Science and Technology, 17(3): 1781-91.
  • Hayati B, Maleki A, Najafi F, Gharibi F, McKay G, Gupta VK, Puttaiah SH, Marzban N. 2018. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem Eng J, 346: 258-270. DOI: 10.1016/j.cej.2018.03.172.
  • Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, Von Keitz MG, Valentas KJ. 2010. Hydrothermal carbonization of microalgae. Biomass Bioenergy, 34: 875-882. DOI: 10.1016/j.biombioe.2010.01.032.
  • Heilmann, SM, Jader LR, Sadowsky MJ, Schendel FJ, Von Keitz MG, Valentas KJ. 2011. Hydrothermal carbonization of distiller's grains. Biomass Bioenergy, 35: 2526-2533. DOI: 10.1016/j.biombioe.2011.02.022
  • Hoffmann V, Jung D, Zimmermann J, Rodriquez Correa C, Elleuch A. 2019. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors (EDLCs) and direct carbon fuel cells (DCFCs). Materials, 12(10): 1-33. DOI: 10.3390/ma12101703.
  • Horikawa T, Kitakaze Y, Sekida T, Hayashi J, Katoh M. 2010. Characteristics and humidity control capacity of activated carbon from bamboo. Bioresour Technol, 101: 3964-3969. DOI: 10.1016/j.biortech.2010.01.032
  • Huang GG, Liu YF, Wu XX, Cai JJ. 2019. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater, 34(3): 247-257. DOI: 10.1016/S1872-5805(19)60014-4
  • Huff MD, Lee JW. 2016. Biochar-surface oxygenation with hydrogen peroxide. J Environ Manage, 165: 17-21. DOI: 10.1016/j.jenvman.2015.08.046.
  • Iriarte-Velasco U, Sierra I, Zudaire L, Ayastuy JL. 2016. Preparation of a porous biochar from the acid activation of pork bones. Food Bioprod Process, 98: 341-353. DOI: 10.1016/j.fbp.2016.03.003.
  • Islam MA, Benhouria A, Asif M, Hameed BH. 2015. Methylene blue adsorption on factory- rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. J Taiwan Inst Chem Eng, 52: 57-64. DOI: doi.org/10.1016/j.jtice.2015.02.010.
  • Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH. 2017. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manage, 203: 237-244. DOI: 10.1016/j.jenvman.2017.07.029.
  • Jain A, Jayaraman S, Balasubramanian R, Srinivasan MP. 2014. Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. J Mater Chem A, 2: 520-528. DOI: 10.1039/C3TA12648J.
  • Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. 2021. Surfactant adsorption isotherms: a review. ACS Omega, 6 (48): 32342-348. DOI: 10.1021/acsomega.1c04661.
  • Kalderis D, Görmez Ö, Saçlı B, Çalhan SD, Gözmen B. 2023. Valorization of loquat seeds by hydrothermal carbonization for the production of hydrochars and aqueous phases as added-value products. J Environ Manage, 344: 118612. DOI: 10.1016/j.jenvman.2023.118612.
  • Kambo HS, Dutta A. 2015. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manage, 105: 746-755. DOI: /10.1016/j.enconman.2015.08.031.
  • Kanchanatip E, Prasertsung N, Thasnas N, ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Grisdanurak N, Wantala K. 2022. Valorization of cannabis waste via hydrothermal carbonization: solid fuel production and characterization. Environ Sci Pollut Res. DOI:10.1007/s11356-022-24123-0
  • Kantarli IC, Kabadayi A, Ucar S, Yanik, J. 2016. Conversion of poultry wastes into energy feedstocks. Waste Manage, 56: 530-539. DOI: 10.1016/j.wasman.2016.07.019.
  • Kantarli IC. 2023. Conversion of brewed tea waste into hydrochar and activated carbon. Int J Glob Warming, 29(1-2):1-15. DOI: 10.1504/IJGW.2023.128832.
  • Kerkez-Kuyumcu O, Bayazit SS, Salam MA. 2016. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J Ind Eng Chem, 36:198-205. DOI: 10.1016/j.jiec.2016.01.040.
  • Laginhas C, Valente Nabais JM, Titirici MM. 2016. Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation. Microporous and Mesoporous Mater, 226: 125-132. DOI: doi.org/10.1016/j.micromeso.2015.12.047.
  • Laksaci H, Belhamdi B, Khelif O, Khelif A, Trari M. 2023. Elimination of amoxicillin by adsorption on coffee waste based activated carbon. J Mol Struct, 1274: 134500.
  • Larsson SH, Rudolfsson M, Nordwaeger M, Olofsson I, Samuelsson R. 2013. Effect of moisture content, torrefaction temperature and die temperature in pilot scale pelletizing of torrefied Norway spruce. App Energy, 102: 827-832. DOI: 10.1016/j.apenergy.2012.08.046.
  • Limousy L, Ghouma I, Ouederni A, Jeguirim M. 2017. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ Sci Pollut Res, 24 (11): 9993-10004. DOI: 10.1007/s11356-016-7404-8.
  • Li H, Hu J, Cao Y, Li X, Wang X. 2017. Development and assessment of a functional activated fore-modified bio-hydrochar for amoxicillin removal. Bioresour Technol, 246:168-175. DOI: 10.1016/j.biortech.2017.06.112.
  • Lim WC, Srinivasakannan C, Balasubramanian N. 2010. Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J Anal Appl Pyrolysis, 88: 181-186. DOI: 10.1016/j.jaap.2010.04.004
  • Liu Y, Zhu X, Qian F, Zhang S, Chen J. 2014. Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Adv, 4(109): 63620-63626. DOI: 10.1039/c4ra11815d.
  • Liu H, Hu Z, Liu H, Xie H, Lu S, Wang Q, Zhang J. 2016. Adsorption of Amoxicillin by Mn-impregnated activated carbons: performance and mechanisms. RSC Adv, 6(14): 11454-11460. DOI: 10.1039/C5RA23256B.
  • Maitlo G, Ali I, Mangi KH, Ali S, Maitlo HA, Unar IN, Pirzada AM. 2022. Thermochemical conversion of biomass for syngas production: current status and future trends. Sustainability, 14(5):2596. DOI: 10.3390/su14052596.
  • Makela M, Benavente V, Fullana A. 2015. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy,155:576-84. DOI: 10.1016/j.apenergy.2015.06.022.
  • Martínez-Castaño M, Mejía Díaz DP, Contreras-Calderón J, Gallardo Cabrera C. 2020. Physicochemical properties of bean pod (Phaseolus vulgaris) flour and its potential as a raw material for the food industry. Revista Facultad Nacional de Agronomía Medellín, 73(2): 9179-9187. DOI: 10.15446/rfnam.v73n2.81564.
  • Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ, Zapata-Revilla MA, Tenorio-Sanz, MD. 2010. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT- Food Sci Technol, 43:1467-1470. DOI: 10.1016/j.lwt.2010.05.008.
  • McGaughy K, Toufiq Reza M. 2018. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conv Bioref, 8: 283-292. DOI: 10.1007/s13399-017-0276-4.
  • Missaoui A, Bostyn S, Belandria V, Cagnon B, Sarh B, Gokalp I. 2017. Hydrothermal carbonization of dried olive pomace: energy potential and process performances. J Anal Appl Pyrolysis,128: 281-90. DOI: 10.1016/j.jaap.2017.09.022.
  • Moradi SE. 2015. Highly efficient removal of amoxicillin from water by magnetic graphene oxide adsorbent. Chem Bull ‘Politehnica’University Timisoara, Rom Ser Chem Environ Eng, 60: 41-48.
  • Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. 2013. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem Eng J, 217: 119-128. DOI:10.1016/j.cej.2012.11.069.
  • Nawaz A, Kumar P. 2023. Impact of temperature severity on hydrothermal carbonization:fuel properties, kinetic and thermodynamic parameters. Fuel, 336:127166. DOI: 10.1016/j.fuel.2022.127166.
  • Nirmaladevi S, Palanisamy PN. 2021. Adsorptive behavior of biochar and zinc chloride activated hydrochar prepared from Acacia leucophloea wood sawdust: kinetic equilibrium and thermodynamic studies. Desalination Water Treat, 209: 170-181. DOI: 10.5004/dwt.2021.26515
  • Odeh AO. 2015. Comprehensive conventional analysis of southern hemisphere coal chars of different ranks for fixed bed gasification. Global Journals of Research in Engineering, 15(4): 5-16.
  • Pala M, Kantarli IC, Buyukisik HB, Yanik J. 2014. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol, 161: 255-262. DOI: 10.1016/j.biortech.2014.03.052.
  • Pari G, Darmawan S, Bambang Prihandoko B. 2014. Porous carbon spheres from hydrothermal carbonization and koh activation on cassava and tapioca flour raw material. Procedia Environmental Sciences, 20: 342-51. DOI: 10.1016/j.proenv.2014.03.043.
  • Parshetti GK, Chowdhury S, Balasubramanian R. 2014. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour Technol, 161: 310-319. DOI: 10.1016/j.biortech.2014.03.087.
  • Pavkov I, Radojčin M, Stamenković Z, Bikić S, Tomić M, Bukurov M, Despotović B. 2022. Hydrothermal carbonization of agricultural biomass: Characterization of hydrochar for energy production. Solid Fuel Chem, 56: 225–235. DOI: 10.3103/S0361521922030077.
  • Petrovic´ JT, Stojanovic´ MD, Milojkovic´ JV, Petrovic´ MS, Šoštaric´ TD, Lauševic´ MD, Mihajlovic´ ML. 2016. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution. J Environ Manage, 182: 292-300. DOI: 10.1016/j.jenvman.2016.07.081.
  • Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Júnior OOS, Visentainer JV, Almeida VC. 2016. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem Eng J; 288: 778-788.
  • Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W, Huhnke RL. 2013. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6 (8): 3972-3986. DOI: 10.3390/en6083972
  • Rashid RA, Jawad AH, Ishak MAM, Kasim NN. 2016. KOH-activated carbon developed from biomass waste: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue uptake. Desalin Water Treat, 57:27226-27236. DOI: 10.1080/19443994.2016.1167630.
  • Redding AM, Cannon FS, Snyder SA, Vanderford BJ. 2009. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons. Water Res, 43(15): 3849-3861. DOI: 10.1016/j.watres.2009.05.026.
  • Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G. 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage, 109: 61-69. DOI: 10.1016/j.jenvman.2012.04.047.
  • Rodrigues DLC, Machado FM, Osorio AG, Azevedo CFD, Lima EC, Silva RSD, Lima DR, FM Gonçalves. 2020. Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies. Environ Sci Pollut Res, 27: 41394-41404. DOI: 10.1007/s11356-020-09583-6.
  • Roman S, Nabais JMV, Ledesma B, Gonzalez, JF, Laginhas C, Titrici MM. 2013. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous and Mesoporous Mater, 165: 127-133. DOI: 10.1016/j.micromeso.2012.08.006.
  • Satpathy SK, Tabil LG, Meda V, Naik SN, Prasad R, 2014. Torrefaction of wheat and barley straw after microwave heating. Fuel, 124: 269-278. DOI: 10.1016/j.fuel.2014.01.102.
  • Saucier C, Karthickeyan P, Ranjithkumar V, Lima EC, Dos Reis GS, De Brum IAS. 2017. Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ Sci Pollut Res, 2017, 24(6): 5918-5932. DOI:10.1007/s11356-016-8304-7.
  • Serna-Galvis EA, Ferraro F, Silva-Agredo J, Torres-Palma RA. 2017. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res, 122: 128-138. DOI: 10.1016/j.watres.2017.05.065.
  • Sevilla M, Fuertes AB. 2011. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci, 4: 1765-71. DOI: 10.1039/C0EE00784F.
  • Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B. 2011. Sorption of bisphenol-A, alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Biroresour Technol, 102: 5757-63. DOI: 10.1016/j.biortech.2011.03.038.
  • Swan NB, Zaini MAA. 2019. Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecol Chem Eng S, 26(1):119-132. DOI: 10.1515/eces-2019-0009.
  • Tran TH, Le HH, Pham TH, Nguyen DT, La DD, Chang SW, Lee SM, Chung,WJ, Nguyen DD. 2021. Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods. J Environ Chem Eng, 9: 105362. DOI:10.1016/j.jece.2021.105362.
  • Unutkan T, Bakırdere S, Keyf S. 2018. Development of an analytical method for the determination of amoxicillin in commercial drugs and wastewater samples, and assessing its stability in simulated gastric digestion. J Chromatogr Sci, 56(1): 36-40. DOI: 10.1093/chromsci/bmx078.
  • Vassilev SV, Vassileva CG, Vassilev VS. 2015. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158: 330-350, DOI:10.1016/j.fuel.2015.05.050.
  • Verma N, Bansal MC, Kumar V. 2011. Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. BioResource, 6: 1505-1519.
  • Wang T, Zhai Y, Zhu Y, Li C, Zeng G. 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev, 90: 223–47. DOI: doi.org/10.1016/j.rser.2018.03.071.
  • Wu S, Wang Q, Cui D, Sun H, H Yin, Xu F, Wang Z. 2023. Evaluation of fuel properties and combustion behaviour of hydrochar derived from hydrothermal carbonisation of agricultural wastes, Journal of the Energy Institute, 108: 101209. DOI:10.1016/j.joei.2023.101209.
  • Yan W, Acharjee TC, Coronella CJ, Victor R, Vásquez VR. 2009. Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy, 28: 435-440. DOI: 10.1002/ep.10385.
  • Yang X, Wan Y, Zheng Y, F He, Z Yu, Huang J, Wang H, YS Ok, Jiang Y, Gao B. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem Eng J, 366: 608-621. DOI: 10.1016/j.cej.2019.02.119.
  • Yi H, Nakabayashi K, Yoon SH, Miyawaki J. 2021. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 183: 735-742. DOI: 10.1016/j.carbon.2021.07.061.
  • Yu F, Li Y, Han S, Ma J. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 153: 365-385. DOI: 10.1016/j.chemosphere.2016.03.083.
  • Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J. 2014. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour Technol, 154: 209-214. DOI: 10.1016/j.biortech.2013.12.019.
  • Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R. 2010. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater, 179(1-3): 1042-1048. DOI: 10.1016/j.jhazmat.2010.03.110.
There are 98 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Solid and Hazardous Wastes, Biomass Energy Systems, Energy, Wastewater Treatment Processes, Chemical and Thermal Processes in Energy and Combustion
Journal Section Research Articles
Authors

İsmail Cem Kantarlı 0000-0002-5911-3152

Early Pub Date October 4, 2023
Publication Date October 15, 2023
Submission Date August 21, 2023
Acceptance Date September 26, 2023
Published in Issue Year 2023 Volume: 6 Issue: 4

Cite

APA Kantarlı, İ. C. (2023). Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal. Black Sea Journal of Engineering and Science, 6(4), 486-501. https://doi.org/10.34248/bsengineering.1347169
AMA Kantarlı İC. Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal. BSJ Eng. Sci. October 2023;6(4):486-501. doi:10.34248/bsengineering.1347169
Chicago Kantarlı, İsmail Cem. “Investigation of Use of Hydrochars Obtained From Legume Wastes As Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal”. Black Sea Journal of Engineering and Science 6, no. 4 (October 2023): 486-501. https://doi.org/10.34248/bsengineering.1347169.
EndNote Kantarlı İC (October 1, 2023) Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal. Black Sea Journal of Engineering and Science 6 4 486–501.
IEEE İ. C. Kantarlı, “Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal”, BSJ Eng. Sci., vol. 6, no. 4, pp. 486–501, 2023, doi: 10.34248/bsengineering.1347169.
ISNAD Kantarlı, İsmail Cem. “Investigation of Use of Hydrochars Obtained From Legume Wastes As Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal”. Black Sea Journal of Engineering and Science 6/4 (October 2023), 486-501. https://doi.org/10.34248/bsengineering.1347169.
JAMA Kantarlı İC. Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal. BSJ Eng. Sci. 2023;6:486–501.
MLA Kantarlı, İsmail Cem. “Investigation of Use of Hydrochars Obtained From Legume Wastes As Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal”. Black Sea Journal of Engineering and Science, vol. 6, no. 4, 2023, pp. 486-01, doi:10.34248/bsengineering.1347169.
Vancouver Kantarlı İC. Investigation of Use of Hydrochars Obtained From Legume Wastes as Fuel and Their Conversion into Activated Carbon for Amoxicillin Removal. BSJ Eng. Sci. 2023;6(4):486-501.

                                                24890