Research Article
BibTex RIS Cite

Experimental and Numerical Investigation of the Position of Hydraulic Jump Formed by Flow Passing Under the Sluice Gate

Year 2024, Volume: 7 Issue: 5, 988 - 1000, 15.09.2024
https://doi.org/10.34248/bsengineering.1463296

Abstract

Sluice gates control the water level in the reservoir and transfer the excessive water above the reservoir capacity to the downstream side in a controlled manner with a certain discharge. The flow passing under a sluice gate can be in free or submerged flow conditions. In the case of free flow, when the flow regime is changed from subcritical to supercritical, hydraulic jump occurs after the gate. The location of the hydraulic jump must be known to prevent the damage caused by the hydraulic jump to hydraulic structures and the channel. In this study, a sluice gate and a linear weir were used to create a hydraulic jump in the rectangular open channel system. The relation of the position of the hydraulic jump with discharge and gate opening was examined. Two different gate openings (e1 = 2.5 cm and e2 = 5 cm) were used in the experiments and experiments were carried out for 34 different discharge values. It has been observed that the hydraulic jump position changes linearly with the discharge. In addition, 2-dimensional numerical models of the physical experimental setups were created, and the hydraulic jump positions and flow depths obtained from the experiments were compared with the numerical models. According to the results obtained from numerical model and physical model showed a consistency of 92.22% for e1 = 2.5 cm gate opening and 95.69% for e2 = 5 cm gate openings.

References

  • Akoz MS, Kirkgoz MS, Oner AA. 2009. Experimental and numerical modeling of a sluice gate flow. J Hydraul Res, 47(2): 167-176.
  • Ansys® Fluent. 2023 Release 23.1, Help System, Chapter 1: Basic Fluid Flow, ANSYS, Inc., pp: 41.
  • Araz GBM, Hanif CM. 1991. Numerical simulation of hydraulic jump. J Hydraul Eng, 117(9): 1195-1211.
  • Aydın, MC, Ulu AE. 2017. Numerical modelling of sluice gates with different baffle types under submerged flow conditions. BEU J Sci Technol, 7(1): 1-6
  • Bakhmeteff BA, Matzke AE. 1936. The hydraulic jump in terms of dynamic similarity. T Am Soc Cıv Eng, 10(11): 630-647.
  • Bélanger JB. 1828. Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes. Chez Carilian-goeury, Paris, Fransa, pp: 62.
  • Bidone G. 1819. Observation sur le hauteur du ressaut hydraulique en 1818. Royal Academy of Sciences, Turin, İtalya.
  • Bradley JN, Peterka AJ. 1957. Hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (Basin I). J Hydr Eng Div-ASCE, 83(5): 1401-1424.
  • Cassan, L, Belaud G. 2012. Experimental and numerical ınvestigation of flow under sluice gates. J Hydraul Eng, 138: 367-373.
  • Cihan AM, Ulu AE. 2017. Numerical modelling of sluice gates with different baffle types under submerged flow conditions. BEU J Sci Technol, 7(1): 1-6.
  • Daneshfaraz R, Abbaszadeh H, Gorbanvatan P, Abdi M. 2021. application of sluice gate in different positions and ıts effect on hydraulic parameters in free-flow conditions. J Hydraul Stract, 7(3): 72-87.
  • Ead SA, Rajaratnam N. 2002. Hydraulic jumps on corrugated beds. J Hydraul Eng, 128(7): 656-663.
  • Gumus V, Simsek O, Soydan NG, Akoz MS, Kirkgoz MS. 2016. Numerical modeling of submerged hydraulic jump from a sluice gate. J Irrig Drain Eng, 142(1): 04015037-1-11.
  • Habibzadeh A, Vatankhah AR, Rajaratnam N. 2011. Role of energy loss on discharge characteristics of sluice gates. J Hydraul Eng, 137(9): 1079-1084.
  • Hager WH. 1992. Energy dissipators and hydraulic jump. Dordrecht. Springer, Water Science and Technology Library, London, UK, pp: 289.
  • Hager WH, Wanoschek R. 1987. Hydraulic jump in triangular channel. J Hydraul Res, 25(5): 549-564.
  • Karami S, Heidari MM, Rad MHA. 2020. Investigation of free flow under the sluice gate with the sill using Flow-3D Model. Ijst-T Cıv Eng, 44(1): 317-324.
  • Kubrak E, Kubrak J, Kiczko A, Kubrak, M. 2020. Flow measurements using a sluice gate; Analysis of applicability. Water, 12(3): 819.
  • Lazzarin T, Viero DP, Defina A, Cozzolino L. 2023. Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions. Phys Fluids, 35 (2): 024114.
  • Levy AG, Ellms JW, Gore W, Fales AL. 1927. The hydraulic jump as a mixing device. American Water Works Assoc, 17:1, 1-26.
  • Peterka AJ. 1984. Hydraulic design of stilling basins and energy dissipators. Bureau of Reclamation, Denver, Colorado, pp: 124.
  • Rajaratnam N, Subramanya K. 1968. Profile of the hydraulic jump, J Hydr Eng Div-Asce, 94(3): 663-674.
  • Retsinis E, Papanicolaou P. 2020. Numerical and experimental study of classical hydraulic jump. Water, 12(6): 1766.
  • Rouse H, Siao TT, Nagaratnam S. 1959. Turbulence characteristics of the hydraulic jump. T Am Soc Civ Eng 124(1): 926-950.
  • Safranez K. 1929. Researches relating to the hydraulic jump, English translation by DP Barnes. Bureau of Reclamation, Denver, Colorado, USA, pp: 63.
  • Silvester R. 1964. Hydraulic jump in all shapes of horizontal channels, J Hydr Eng Div-ASCE, 90(1): 23-55.
  • Swamee PK. 1992. Sluicegate discharge equations. J Irrig Drain Eng, 118(1): 56-60.

Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi

Year 2024, Volume: 7 Issue: 5, 988 - 1000, 15.09.2024
https://doi.org/10.34248/bsengineering.1463296

Abstract

Bent kapakları, rezervuardaki su seviyesini kontrol edilmesini ve kapasitenin üzerindeki fazla suyun belli bir debi ile kontrollü bir şekilde mansap tarafına aktarılmasını sağlarlar. Bir bent kapağının altından geçen akım, serbest veya batmış akım durumda olabilir. Serbest akım durumunda kapak altından sel rejimiyle çıkan akım, nehir rejimine geçişinde, kapak sonrasında bir hidrolik sıçrama meydana getirir. Oluşan hidrolik sıçramanın, etraftaki yapılara ve bulunduğu kanala zarar vermemesi için hidrolik sıçrama konumunun tam olarak bilinmesi gerekmektedir. Bu çalışmada dikdörtgen kesite sahip bir açık kanal sisteminde, hidrolik sıçrama oluşturmak için bent kapağı ve doğrusal savak kullanılmıştır. Oluşan hidrolik sıçramanın konumunun, debi ve kapak açıklığı ile değişimi incelenmiştir. Deneylerde iki farklı kapak açıklığı (e1 =2,5 cm ve e2 =5 cm) kullanılmış ve 34 farklı debi değeri için deneyler yapılmıştır. Hidrolik sıçrama konumunun kapak açıklığına bağlı olarak farklı oranlarda, debi ile lineer değişim gösterdiği görülmüştür. Ayrıca fiziksel deney düzeneklerinin, 2-boyutlu nümerik modelleri oluşturulmuş ve deneylerden elde edilen hidrolik sıçrama konumları ve akım derinlikleri, nümerik modeller ile karşılaştırılmıştır. Elde edilen sonuçlara göre nümerik model ile fiziksel model, e=2,5 cm kapak açıklığı için %92,22 ve e=5 cm kapak açıklığı için %95,69 oranında tutarlılık göstermişlerdir.

References

  • Akoz MS, Kirkgoz MS, Oner AA. 2009. Experimental and numerical modeling of a sluice gate flow. J Hydraul Res, 47(2): 167-176.
  • Ansys® Fluent. 2023 Release 23.1, Help System, Chapter 1: Basic Fluid Flow, ANSYS, Inc., pp: 41.
  • Araz GBM, Hanif CM. 1991. Numerical simulation of hydraulic jump. J Hydraul Eng, 117(9): 1195-1211.
  • Aydın, MC, Ulu AE. 2017. Numerical modelling of sluice gates with different baffle types under submerged flow conditions. BEU J Sci Technol, 7(1): 1-6
  • Bakhmeteff BA, Matzke AE. 1936. The hydraulic jump in terms of dynamic similarity. T Am Soc Cıv Eng, 10(11): 630-647.
  • Bélanger JB. 1828. Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes. Chez Carilian-goeury, Paris, Fransa, pp: 62.
  • Bidone G. 1819. Observation sur le hauteur du ressaut hydraulique en 1818. Royal Academy of Sciences, Turin, İtalya.
  • Bradley JN, Peterka AJ. 1957. Hydraulic design of stilling basins: hydraulic jumps on a horizontal apron (Basin I). J Hydr Eng Div-ASCE, 83(5): 1401-1424.
  • Cassan, L, Belaud G. 2012. Experimental and numerical ınvestigation of flow under sluice gates. J Hydraul Eng, 138: 367-373.
  • Cihan AM, Ulu AE. 2017. Numerical modelling of sluice gates with different baffle types under submerged flow conditions. BEU J Sci Technol, 7(1): 1-6.
  • Daneshfaraz R, Abbaszadeh H, Gorbanvatan P, Abdi M. 2021. application of sluice gate in different positions and ıts effect on hydraulic parameters in free-flow conditions. J Hydraul Stract, 7(3): 72-87.
  • Ead SA, Rajaratnam N. 2002. Hydraulic jumps on corrugated beds. J Hydraul Eng, 128(7): 656-663.
  • Gumus V, Simsek O, Soydan NG, Akoz MS, Kirkgoz MS. 2016. Numerical modeling of submerged hydraulic jump from a sluice gate. J Irrig Drain Eng, 142(1): 04015037-1-11.
  • Habibzadeh A, Vatankhah AR, Rajaratnam N. 2011. Role of energy loss on discharge characteristics of sluice gates. J Hydraul Eng, 137(9): 1079-1084.
  • Hager WH. 1992. Energy dissipators and hydraulic jump. Dordrecht. Springer, Water Science and Technology Library, London, UK, pp: 289.
  • Hager WH, Wanoschek R. 1987. Hydraulic jump in triangular channel. J Hydraul Res, 25(5): 549-564.
  • Karami S, Heidari MM, Rad MHA. 2020. Investigation of free flow under the sluice gate with the sill using Flow-3D Model. Ijst-T Cıv Eng, 44(1): 317-324.
  • Kubrak E, Kubrak J, Kiczko A, Kubrak, M. 2020. Flow measurements using a sluice gate; Analysis of applicability. Water, 12(3): 819.
  • Lazzarin T, Viero DP, Defina A, Cozzolino L. 2023. Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions. Phys Fluids, 35 (2): 024114.
  • Levy AG, Ellms JW, Gore W, Fales AL. 1927. The hydraulic jump as a mixing device. American Water Works Assoc, 17:1, 1-26.
  • Peterka AJ. 1984. Hydraulic design of stilling basins and energy dissipators. Bureau of Reclamation, Denver, Colorado, pp: 124.
  • Rajaratnam N, Subramanya K. 1968. Profile of the hydraulic jump, J Hydr Eng Div-Asce, 94(3): 663-674.
  • Retsinis E, Papanicolaou P. 2020. Numerical and experimental study of classical hydraulic jump. Water, 12(6): 1766.
  • Rouse H, Siao TT, Nagaratnam S. 1959. Turbulence characteristics of the hydraulic jump. T Am Soc Civ Eng 124(1): 926-950.
  • Safranez K. 1929. Researches relating to the hydraulic jump, English translation by DP Barnes. Bureau of Reclamation, Denver, Colorado, USA, pp: 63.
  • Silvester R. 1964. Hydraulic jump in all shapes of horizontal channels, J Hydr Eng Div-ASCE, 90(1): 23-55.
  • Swamee PK. 1992. Sluicegate discharge equations. J Irrig Drain Eng, 118(1): 56-60.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Hydromechanics, Water Resources Engineering, Water Resources and Water Structures
Journal Section Research Articles
Authors

Ali Yıldız 0000-0002-6909-6114

Early Pub Date September 9, 2024
Publication Date September 15, 2024
Submission Date April 2, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 7 Issue: 5

Cite

APA Yıldız, A. (2024). Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi. Black Sea Journal of Engineering and Science, 7(5), 988-1000. https://doi.org/10.34248/bsengineering.1463296
AMA Yıldız A. Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi. BSJ Eng. Sci. September 2024;7(5):988-1000. doi:10.34248/bsengineering.1463296
Chicago Yıldız, Ali. “Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel Ve Nümerik Olarak Belirlenmesi”. Black Sea Journal of Engineering and Science 7, no. 5 (September 2024): 988-1000. https://doi.org/10.34248/bsengineering.1463296.
EndNote Yıldız A (September 1, 2024) Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi. Black Sea Journal of Engineering and Science 7 5 988–1000.
IEEE A. Yıldız, “Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi”, BSJ Eng. Sci., vol. 7, no. 5, pp. 988–1000, 2024, doi: 10.34248/bsengineering.1463296.
ISNAD Yıldız, Ali. “Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel Ve Nümerik Olarak Belirlenmesi”. Black Sea Journal of Engineering and Science 7/5 (September 2024), 988-1000. https://doi.org/10.34248/bsengineering.1463296.
JAMA Yıldız A. Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi. BSJ Eng. Sci. 2024;7:988–1000.
MLA Yıldız, Ali. “Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel Ve Nümerik Olarak Belirlenmesi”. Black Sea Journal of Engineering and Science, vol. 7, no. 5, 2024, pp. 988-1000, doi:10.34248/bsengineering.1463296.
Vancouver Yıldız A. Bent Kapağı Altından Geçen Akımın Oluşturduğu Hidrolik Sıçramanın Konumunun Deneysel ve Nümerik Olarak Belirlenmesi. BSJ Eng. Sci. 2024;7(5):988-1000.

                                                24890