Research Article
BibTex RIS Cite

Bibliometric Analysis of Math and Artificial Intelligence Research

Year 2025, Volume: 8 Issue: 1, 19 - 20
https://doi.org/10.34248/bsengineering.1516593

Abstract

Bu çalışma, matematik ve yapay zeka (YZ) alanındaki araştırma ortamını keşfetmek için kapsamlı bir bibliyometrik analiz yürütmektedir. Birincil veri kaynağı olarak Scopus'u kullanarak, bu alanlardaki temel yayınlar ve eğilimler belirlenmiştir. VOSviewer aracılığıyla, araştırmacılar ve kurumlar arasındaki anahtar kelime ağları ve işbirlikleri görselleştirilmiştir. Analiz, YZ ve matematik gibi konuların akademik söylemdeki önemini ve Amerika Birleşik Devletleri, Birleşik Krallık ve Çin gibi ülkelerin araştırma işbirliğinde oynadığı merkezi rolü ortaya koymaktadır. Sınırlamalar arasında veri kaynaklarındaki potansiyel önyargılar ve analiz için anahtar kelimelere güvenilmesi yer almaktadır. Gelecekteki araştırmalar, araştırma eğilimleri ve etkisi hakkında daha incelikli bir anlayış sağlamak için alternatif ölçütleri ve nitel analizleri entegre edebileceği düşünülmektedir.

References

  • DeAggarwal, CC, Aggarwal, LF, Lagerstrom-Fife. 2020. Linear algebra and optimization for machine learning. Springer International Publishing, London, UK, 156: 97-120.
  • Dydak, J. 2023. Artificial intelligence and teaching of linear algebra. University of Tennessee, Knoxville, USA, pp: 2-42.

Bibliometric Analysis of Math and Artificial Intelligence Research

Year 2025, Volume: 8 Issue: 1, 19 - 20
https://doi.org/10.34248/bsengineering.1516593

Abstract

This study conducts a comprehensive bibliometric analysis to explore the landscape of research in mathematics and artificial intelligence (AI). Using Scopus as the primary data source, we identify key publications and trends in these fields. Through VOSviewer, we visualize networks of keywords and collaborations among researchers and institutions. The analysis reveals the prominence of topics such as AI and mathematics in academic discourse, as well as the central role played by countries like the United States, the United Kingdom, and China in research collaboration. Limitations include potential biases in data sources and the reliance on keywords for analysis. Future research could integrate alternative metrics and qualitative analyses to provide a more nuanced understanding of research trends and impact.

References

  • DeAggarwal, CC, Aggarwal, LF, Lagerstrom-Fife. 2020. Linear algebra and optimization for machine learning. Springer International Publishing, London, UK, 156: 97-120.
  • Dydak, J. 2023. Artificial intelligence and teaching of linear algebra. University of Tennessee, Knoxville, USA, pp: 2-42.
There are 2 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Şeyma Bozkurt Uzan 0000-0003-3527-3730

Nesibe Manav Mutlu 0000-0002-7853-6337

İrem Deniz Arberk 0009-0001-5192-6781

Publication Date
Submission Date July 15, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Bozkurt Uzan, Ş., Mutlu, N. M., & Arberk, İ. D. (n.d.). Bibliometric Analysis of Math and Artificial Intelligence Research. Black Sea Journal of Engineering and Science, 8(1), 19-20. https://doi.org/10.34248/bsengineering.1516593
AMA Bozkurt Uzan Ş, Mutlu NM, Arberk İD. Bibliometric Analysis of Math and Artificial Intelligence Research. BSJ Eng. Sci. 8(1):19-20. doi:10.34248/bsengineering.1516593
Chicago Bozkurt Uzan, Şeyma, Nesibe Manav Mutlu, and İrem Deniz Arberk. “Bibliometric Analysis of Math and Artificial Intelligence Research”. Black Sea Journal of Engineering and Science 8, no. 1 n.d.: 19-20. https://doi.org/10.34248/bsengineering.1516593.
EndNote Bozkurt Uzan Ş, Mutlu NM, Arberk İD Bibliometric Analysis of Math and Artificial Intelligence Research. Black Sea Journal of Engineering and Science 8 1 19–20.
IEEE Ş. Bozkurt Uzan, N. M. Mutlu, and İ. D. Arberk, “Bibliometric Analysis of Math and Artificial Intelligence Research”, BSJ Eng. Sci., vol. 8, no. 1, pp. 19–20, doi: 10.34248/bsengineering.1516593.
ISNAD Bozkurt Uzan, Şeyma et al. “Bibliometric Analysis of Math and Artificial Intelligence Research”. Black Sea Journal of Engineering and Science 8/1 (n.d.), 19-20. https://doi.org/10.34248/bsengineering.1516593.
JAMA Bozkurt Uzan Ş, Mutlu NM, Arberk İD. Bibliometric Analysis of Math and Artificial Intelligence Research. BSJ Eng. Sci.;8:19–20.
MLA Bozkurt Uzan, Şeyma et al. “Bibliometric Analysis of Math and Artificial Intelligence Research”. Black Sea Journal of Engineering and Science, vol. 8, no. 1, pp. 19-20, doi:10.34248/bsengineering.1516593.
Vancouver Bozkurt Uzan Ş, Mutlu NM, Arberk İD. Bibliometric Analysis of Math and Artificial Intelligence Research. BSJ Eng. Sci. 8(1):19-20.

                                                24890