Research Article
BibTex RIS Cite

Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning

Year 2025, Volume: 8 Issue: 2, 7 - 8
https://doi.org/10.34248/bsengineering.1583610

Abstract

This study aims to classify vibration data obtained from old CNC milling (brownfield) machines used in industrial production processes with machine learning algorithms. The analysis of data obtained from such machines is of critical importance in order to increase the efficiency of old production machines and optimize production processes. In the study, vibration data collected from three different CNC machines under real production conditions for two years were used. The collected data were analyzed with various machine learning algorithms, especially overlearning techniques, and the performances of these algorithms were compared. The results showed that the proposed machine learning methods can classify the information obtained from vibration data with high accuracy rates. The algorithms used provided an effective solution for early detection of tool wear, operational errors and other production problems caused by vibration, thus enabling more efficient management of production processes. The study presents an innovative method for modernizing old machines in particular within the framework of Industry 4.0, and provides important practical contributions in terms of improving industrial processes, optimizing maintenance processes and increasing overall efficiency.

Ethical Statement

Since this study did not involve any studies on animals or humans, ethics committee approval was not obtained.

References

  • Anonymous. 2020. Retrieved from bosch connected devices and solutions GmbH. URL: https://www.bosch-connectivity.com/%0Amedia/downloads/ciss/ciss_datasheet.pdf (accessed date: 23 September 2024).
  • Hesser DF, Markert B. 2019. Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manuf Lett, 19: 1-4.

Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning

Year 2025, Volume: 8 Issue: 2, 7 - 8
https://doi.org/10.34248/bsengineering.1583610

Abstract

Bu çalışma, endüstriyel üretim süreçlerinde kullanılan eski CNC freze (kahverengi saha) makinelerinden elde edilen titreşim verilerini makine öğrenimi algoritmaları ile sınıflandırmayı amaçlamaktadır. Bu tür makinelerden elde edilen verilerin analizi, eski üretim makinelerinin verimliliğini artırmak ve üretim süreçlerini optimize etmek için kritik öneme sahiptir. Çalışmada, gerçek üretim koşulları altında iki yıl boyunca üç farklı CNC makinesinden toplanan titreşim verileri kullanılmıştır. Toplanan veriler, özellikle aşırı öğrenme teknikleri olmak üzere çeşitli makine öğrenimi algoritmaları ile analiz edilmiş ve bu algoritmaların performansları karşılaştırılmıştır. Sonuçlar, önerilen makine öğrenimi yöntemlerinin titreşim verilerinden elde edilen bilgileri yüksek doğruluk oranlarıyla sınıflandırabildiğini göstermiştir. Kullanılan algoritmalar, titreşim kaynaklı takım aşınması, operasyonel hatalar ve diğer üretim sorunlarının erken tespiti için etkili bir çözüm sağlamış ve böylece üretim süreçlerinin daha verimli bir şekilde yönetilmesine olanak tanımıştır. Çalışma, özellikle Endüstri 4.0 çerçevesinde eski makinelerin modernize edilmesi için yenilikçi bir yöntem sunmakta ve endüstriyel süreçlerin iyileştirilmesi, bakım süreçlerinin optimize edilmesi ve genel verimliliğin artırılması açısından önemli pratik katkılar sağlamaktadır.

References

  • Anonymous. 2020. Retrieved from bosch connected devices and solutions GmbH. URL: https://www.bosch-connectivity.com/%0Amedia/downloads/ciss/ciss_datasheet.pdf (accessed date: 23 September 2024).
  • Hesser DF, Markert B. 2019. Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manuf Lett, 19: 1-4.
There are 2 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control, Optimization Techniques in Mechanical Engineering
Journal Section Research Articles
Authors

Rasim Çekik 0000-0002-7820-413X

Abdullah Turan 0000-0002-0174-2490

Publication Date
Submission Date November 12, 2024
Acceptance Date January 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Çekik, R., & Turan, A. (n.d.). Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning. Black Sea Journal of Engineering and Science, 8(2), 7-8. https://doi.org/10.34248/bsengineering.1583610
AMA Çekik R, Turan A. Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning. BSJ Eng. Sci. 8(2):7-8. doi:10.34248/bsengineering.1583610
Chicago Çekik, Rasim, and Abdullah Turan. “Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning”. Black Sea Journal of Engineering and Science 8, no. 2 n.d.: 7-8. https://doi.org/10.34248/bsengineering.1583610.
EndNote Çekik R, Turan A Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning. Black Sea Journal of Engineering and Science 8 2 7–8.
IEEE R. Çekik and A. Turan, “Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning”, BSJ Eng. Sci., vol. 8, no. 2, pp. 7–8, doi: 10.34248/bsengineering.1583610.
ISNAD Çekik, Rasim - Turan, Abdullah. “Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning”. Black Sea Journal of Engineering and Science 8/2 (n.d.), 7-8. https://doi.org/10.34248/bsengineering.1583610.
JAMA Çekik R, Turan A. Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning. BSJ Eng. Sci.;8:7–8.
MLA Çekik, Rasim and Abdullah Turan. “Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning”. Black Sea Journal of Engineering and Science, vol. 8, no. 2, pp. 7-8, doi:10.34248/bsengineering.1583610.
Vancouver Çekik R, Turan A. Classification of Vibration Data from Brownfield Milling Machines Using Machine Learning. BSJ Eng. Sci. 8(2):7-8.

                                                24890