Experimental Investigation of Cooling of an Electric Vehicle Lithium Ion Battery Under Natural Convection Conditions
Year 2025,
Volume: 8 Issue: 3, 855 - 862, 15.05.2025
Muhittin Bilgili
,
Yunus Emre Gönülaçar
,
Emre Aşkın Elibol
Abstract
In this study, the thermal and electrical performance of a 10 Ah Lithium Iron Phosphate (LFP) battery used in electric vehicles was experimentally investigated under natural convection conditions and different discharge rates. The changes in the surface temperatures of the battery with time at different discharge rates were both imaged using a thermal camera and recorded with the help of a data logger, and the results were compared with each other. In addition, the heat transfer rates from the battery surface to the ambient air during battery discharge were calculated, voltage changes were measured and the obtained findings were presented graphically. As a result, it was found that the average battery surface temperature and the heat transfer rate from the battery to the environment increased with the increase in the discharge rate, while the voltage value decreased. Experimental findings showed that the maximum battery surface temperatures at 1C, 2C and 3C discharge rates were 37.3℃, 49.1℃, and 55.1℃, respectively. Consequently, it was determined that natural convection cooling for the battery is insufficient for high discharge rates (2C and 3C). Increasing the discharge rate from 1C to 3C increased the maximum heat transfer rate by approximately 255%. Results from thermocouple data and thermal images were found to be consistent with each other, with a maximum difference of 2.2%.
Project Number
FDK-2023-8879
References
- Abdelkareem MA, Maghrabie HM, Abo-Khalil AG, Adhari OHK, Sayed ET, Radwan A, Olabi AG. 2022. Battery thermal management systems based on nanofluids for electric vehicles. J Energy Storage, 50: 104385.
- Bazinski SJ, Wang X, Sangeorzan BP, Guessous L. 2016. Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells. Energy, 114: 1085-1092.
- Behi H, Karimi D, Behi M, Ghanbarpour M, Jaguemont J, Sokkeh MA, Van Mierlo J. 2020. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Appl Therm Eng, 174: 115280.
- Can A, Selimefendigil F, Öztop HF. 2022. A review on soft computing and nanofluid applications for battery thermal management. J Energy Storage, 53: 105214.
- Çengel Y, Ghajar A. 2015. Heat and mass transfer. McGraw-Hill, New York, USA, 5th ed., pp: 533-577.
- Churchill SW, Chu HHS, 1975. Correlating equations for laminar and turbulent free convection from a vertical plate. Int J Heat Mass Transf, 18(11): 1323-1329.
- Dilbaz F, Selimefendigil F, Öztop HF. 2022. Lithium-ion battery module performance improvements by using nanodiamond-Fe3O4 water/ethylene glycol hybrid nanofluid and fins. J Therm Anal Calorim, 147(19): 10625-10635.
- Gümüşsu E, Ekici Ö, Köksal M. 2017. 3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery. Appl Therm Eng, 120: 484-495.
- Iqbal U, Ali M, Khalid HA, Waqas A, Mahmood M, Ahmed N, Mehboob K. 2023. Experimental study to optimize the thermal performance of Li-ion cell using active and passive cooling techniques. J Energy Storage, 70: 108013.
- Jayabalan J, Govindarajan M, Madhav VV, Sabareesaan KJ. 2022. Thermal management for green vehicle batteries under natural and forced convection modes. Curr Appl Sci Technol, 22(4): 1-21.
- Kalkan O, Celen A, Bakirci K. 2021. Experimental and numerical investigation of the LiFePO4 battery cooling by natural convection. J Energy Storage, 40: 102796.
- Kline S, McClintock F. 1953. Describing uncertainties in single-sample experiments. Mech Eng, 75: 3-8.
- Li J, Zuo WEJ, Zhang Y, Li Q, Sun K, Zhang G. 2022. Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II. Energy, 242: 123039.
- Li X, Zhang Z, Wang W, Tian Y, Li D, Tian J. 2020. Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis. Appl Energy, 262: 114518.
- Liao G, Wang W, Zhang FEJ, Chen J, Leng E. 2022. Thermal performance of lithium-ion battery thermal management system based on nanofluid. Appl Therm Eng, 216: 118997.
- Ma R, Xuan W, Jiang Z, Wang D, Cao J, Xia F, Yu B, Wu D, Shi J, Chen J. 2024. Natural convection characteristics of novel immersion liquid applied to battery thermal management in static mode. J Energy Storage, 101: 113927.
- Metallo A. 2024. Innovative approaches to optimizing Li-Ion battery cooling performance using gas mixtures. Appl Therm Eng, 257: 124472.
- Monika K, Chakraborty C, Roy S, Dinda S, Singh SA, Datta SP. 2021. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. J Energy Storage, 35: 102301.
- Niculuţǎ MC, Veje C. 2012. Analysis of the thermal behavior of a LiFePO4 battery cell. J Phys, 395(1): 012013.
- Panchal S, Dincer I, Agelin-chaab M, Fraser R, Fowler M. 2016. Experimental and simulated temperature variations in a LiFePO4 -20 Ah battery during discharge process. Appl Energy, 180: 504-515.
- Pesaran AA. 2003. Thermal characterization of advanced lithium-ion polymer cells. In: Third Advanced Automotive Battery Conference, June 10-13, Nice, France, pp: 1-7.
- Sarchami A, Najafi M, Imam A, Houshfar E. 2022. Experimental study of thermal management system for cylindrical Li-ion battery pack based on nanofluid cooling and copper sheath. Int J Therm Sci, 171: 107244.
- Sikarwar S, Kumar R, Yadav A, Gwalwanshi M. 2023. Battery thermal management system for the cooling of Li-Ion batteries, used in electric vehicles. Mater Today Proc, https://doi.org/10.1016/j.matpr.2023.02.293.
- Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. 2019. Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium-ion power battery. Appl Therm Eng, 152(February): 204-214.
- Wu F, Rao Z. 2017. The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management. Appl Therm Eng, 115: 659-669.
- Yang X, Gao X, Zhang F, Luo W, Duan Y. 2021. Experimental study on temperature difference between the interior and surface of Li[Ni1/3Co1/3Mn1/3]O2 prismatic lithium-ion batteries at natural convection and adiabatic condition. Appl Therm Eng, 190: 116746.
- Youssef R, He J, Akbarzadeh M, Jaguemont J, De Sutter L, Berecibar M, Van Mierlo J. 2020. Investigation of thermal behavior of large lithium-ion prismatic cell in natural air convection. In: Proceedings of the 9th International Conference on Applied Energy, September 27-30, Glasgow, UK, pp: 43-47.
- Youssef R, Hosen MS, He J, Jaguemont J, Akbarzadeh M, De Sutter L, Berecibar M. 2021. Experimental and numerical study on the thermal behavior of a large lithium-ion prismatic cell with natural air convection. IEEE Trans Ind Appl, 57(6): 6475-6482.
Bir Elektrikli Araç Lityum İyon Bataryasının Doğal Taşınım Şartlarında Soğutulmasının Deneysel Olarak İncelenmesi
Year 2025,
Volume: 8 Issue: 3, 855 - 862, 15.05.2025
Muhittin Bilgili
,
Yunus Emre Gönülaçar
,
Emre Aşkın Elibol
Abstract
Bu çalışmada, elektrikli araçlarda kullanılan 10 Ah kapasitedeki bir Lityum Demir Fosfat (LFP) bataryanın, doğal taşınım şartları ve farklı deşarj hızları altındaki termal ve elektriksel performansı deneysel olarak incelenmiştir. Farklı deşarj hızlarında bataryanın yüzey sıcaklıklarının zamana bağlı değişimi hem termal kamera kullanılarak görüntülenmiş hem de veri kaydedici yardımıyla kaydedilerek sonuçlar birbiriyle karşılaştırılmıştır. Ayrıca bataryanın deşarjı sırasında batarya yüzeyinden çevre havaya olan ısı transfer hızları hesaplanmış, voltaj değişimleri ölçülmüş ve elde edilen bulgular grafiksel olarak sunulmuştur. Sonuç olarak deşarj hızının artmasıyla ortalama batarya yüzey sıcaklığı ve bataryadan çevreye olan ısı transfer hızının arttığı görülürken voltaj değerinin azaldığı tespit edilmiştir. Deneysel bulgular 1C, 2C ve 3C deşarj hızlarındaki maksimum batarya yüzey sıcaklıklarının sırasıyla 37,3℃, 49,1℃ ve 55,1℃ olduğunu göstermiştir. Dolayısıyla bataryayı doğal taşınımla soğutmanın yüksek deşarj hızları için (2C ve 3C) yeterli olmadığı sonucuna varılmıştır. Deşarj hızının 1C’den 3C’ye çıkarılması maksimum ısı transfer hızını yaklaşık % 255 oranında arttırmıştır. Termal görüntülerden ve ısıl çift verilerinden elde edilen sonuçların maksimum %2,2’lik bir fark ile birbiriyle uyumlu olduğu görülmüştür.
Ethical Statement
Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.
Supporting Institution
Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
FDK-2023-8879
Thanks
Bu çalışma Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-2023-8879 proje koduyla desteklenmiştir. Desteklerinden dolayı kendilerine teşekkür ederiz.
References
- Abdelkareem MA, Maghrabie HM, Abo-Khalil AG, Adhari OHK, Sayed ET, Radwan A, Olabi AG. 2022. Battery thermal management systems based on nanofluids for electric vehicles. J Energy Storage, 50: 104385.
- Bazinski SJ, Wang X, Sangeorzan BP, Guessous L. 2016. Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells. Energy, 114: 1085-1092.
- Behi H, Karimi D, Behi M, Ghanbarpour M, Jaguemont J, Sokkeh MA, Van Mierlo J. 2020. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Appl Therm Eng, 174: 115280.
- Can A, Selimefendigil F, Öztop HF. 2022. A review on soft computing and nanofluid applications for battery thermal management. J Energy Storage, 53: 105214.
- Çengel Y, Ghajar A. 2015. Heat and mass transfer. McGraw-Hill, New York, USA, 5th ed., pp: 533-577.
- Churchill SW, Chu HHS, 1975. Correlating equations for laminar and turbulent free convection from a vertical plate. Int J Heat Mass Transf, 18(11): 1323-1329.
- Dilbaz F, Selimefendigil F, Öztop HF. 2022. Lithium-ion battery module performance improvements by using nanodiamond-Fe3O4 water/ethylene glycol hybrid nanofluid and fins. J Therm Anal Calorim, 147(19): 10625-10635.
- Gümüşsu E, Ekici Ö, Köksal M. 2017. 3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery. Appl Therm Eng, 120: 484-495.
- Iqbal U, Ali M, Khalid HA, Waqas A, Mahmood M, Ahmed N, Mehboob K. 2023. Experimental study to optimize the thermal performance of Li-ion cell using active and passive cooling techniques. J Energy Storage, 70: 108013.
- Jayabalan J, Govindarajan M, Madhav VV, Sabareesaan KJ. 2022. Thermal management for green vehicle batteries under natural and forced convection modes. Curr Appl Sci Technol, 22(4): 1-21.
- Kalkan O, Celen A, Bakirci K. 2021. Experimental and numerical investigation of the LiFePO4 battery cooling by natural convection. J Energy Storage, 40: 102796.
- Kline S, McClintock F. 1953. Describing uncertainties in single-sample experiments. Mech Eng, 75: 3-8.
- Li J, Zuo WEJ, Zhang Y, Li Q, Sun K, Zhang G. 2022. Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II. Energy, 242: 123039.
- Li X, Zhang Z, Wang W, Tian Y, Li D, Tian J. 2020. Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis. Appl Energy, 262: 114518.
- Liao G, Wang W, Zhang FEJ, Chen J, Leng E. 2022. Thermal performance of lithium-ion battery thermal management system based on nanofluid. Appl Therm Eng, 216: 118997.
- Ma R, Xuan W, Jiang Z, Wang D, Cao J, Xia F, Yu B, Wu D, Shi J, Chen J. 2024. Natural convection characteristics of novel immersion liquid applied to battery thermal management in static mode. J Energy Storage, 101: 113927.
- Metallo A. 2024. Innovative approaches to optimizing Li-Ion battery cooling performance using gas mixtures. Appl Therm Eng, 257: 124472.
- Monika K, Chakraborty C, Roy S, Dinda S, Singh SA, Datta SP. 2021. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. J Energy Storage, 35: 102301.
- Niculuţǎ MC, Veje C. 2012. Analysis of the thermal behavior of a LiFePO4 battery cell. J Phys, 395(1): 012013.
- Panchal S, Dincer I, Agelin-chaab M, Fraser R, Fowler M. 2016. Experimental and simulated temperature variations in a LiFePO4 -20 Ah battery during discharge process. Appl Energy, 180: 504-515.
- Pesaran AA. 2003. Thermal characterization of advanced lithium-ion polymer cells. In: Third Advanced Automotive Battery Conference, June 10-13, Nice, France, pp: 1-7.
- Sarchami A, Najafi M, Imam A, Houshfar E. 2022. Experimental study of thermal management system for cylindrical Li-ion battery pack based on nanofluid cooling and copper sheath. Int J Therm Sci, 171: 107244.
- Sikarwar S, Kumar R, Yadav A, Gwalwanshi M. 2023. Battery thermal management system for the cooling of Li-Ion batteries, used in electric vehicles. Mater Today Proc, https://doi.org/10.1016/j.matpr.2023.02.293.
- Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. 2019. Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium-ion power battery. Appl Therm Eng, 152(February): 204-214.
- Wu F, Rao Z. 2017. The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management. Appl Therm Eng, 115: 659-669.
- Yang X, Gao X, Zhang F, Luo W, Duan Y. 2021. Experimental study on temperature difference between the interior and surface of Li[Ni1/3Co1/3Mn1/3]O2 prismatic lithium-ion batteries at natural convection and adiabatic condition. Appl Therm Eng, 190: 116746.
- Youssef R, He J, Akbarzadeh M, Jaguemont J, De Sutter L, Berecibar M, Van Mierlo J. 2020. Investigation of thermal behavior of large lithium-ion prismatic cell in natural air convection. In: Proceedings of the 9th International Conference on Applied Energy, September 27-30, Glasgow, UK, pp: 43-47.
- Youssef R, Hosen MS, He J, Jaguemont J, Akbarzadeh M, De Sutter L, Berecibar M. 2021. Experimental and numerical study on the thermal behavior of a large lithium-ion prismatic cell with natural air convection. IEEE Trans Ind Appl, 57(6): 6475-6482.