Research Article
BibTex RIS Cite

Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing

Year 2025, Volume: 8 Issue: 4, 999 - 1006, 15.07.2025
https://doi.org/10.34248/bsengineering.1641111

Abstract

Customized implants offer many advantages in medical implant applications. Material selection from the limited biocompatible material choices plays a crucial role in the success of the treatment. In this study, we compare the results obtained from dynamic fatigue testing and finite element analysis of raw materials planned for use in personalized implant systems which were made possible by the advancements in production technologies and their widespread adoption in the medical sector. The study first discusses the concept of customized implants and the materials necessary for these implants. Multiple test samples were then produced using subtractive and additive manufacturing methods according to specified dimensions using the selected materials. Static and dynamic tests were applied to the produced samples. The cobalt-chromium alloy demonstrated the highest rupture value (5.9 kN) in static tests; furthermore, it exhibited the highest value (562,189 cycles) when the rupture cycle was analyzed in dynamic tests. The results from these tests were evaluated in terms of materials and manufacturing methods. Based on the evaluations, CoCr was identified as a more durable material, and in terms of manufacturing methods, parts produced by subtractive manufacturing were found to be more durable.

References

  • Aherwar A, Singh AK, Patnaik A. 2016. Cobalt based alloy: a better choice biomaterial for hip implants. Trends Biomater Artif Organs, 30(1), pp: 1-7.
  • Al Jabbari YS. 2014. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J Adv Prosthodont, 6(2): 138-145.
  • Brăileanu PI, Simion I, Bou-Said B, Crişan N. 2018. Custom hip implant design optimisation, 2018 19th Int Conf Res Educ Mechatron, Delft, NL, pp: 58-63.
  • Çetiner D, Tazegül O, Atar E, Çimenoğlu H. 2014. Biyomedikal kobalt-krom alaşımı üzerinde oluşturulan TiO2 tabakasının karakterizasyonu ve biyoaktivitesinin incelenmesi. Müh Bilim Tasarım Derg, 2(3): 171-174.
  • de Jong IJ, Lexis MA, Slegers K, Tuijthof GJ. 2024. Medical device regulation: requirements for occupational therapists in The Netherlands who prescribe and manufacture custom-made devices. Disabil Rehabil Assist Technol, 19(4): 1415-1423.
  • de Viteri VS, Fuentes E. 2013. Titanium and titanium alloys as biomaterials. Tribol Fundam Adv, 1(5): 154-181.
  • Du R, Su YX, Yan Y, Choi WS, Yang WF, Zhang C, Chen X, Curtin JP, Ouyang J, Zhang B. 2020. A systematic approach for making 3D-printed patient-specific implants for craniomaxillofacial reconstruction. Eng, 6(11): 1291-1301.
  • Gür AK, Taşkın M. 2004. Metalik biyomalzemeler ve biyouyum. Fırat Üniv Doğu Araş Derg, 2(2): 106-113.
  • Güven Ş. 2014. Biyouyumluluk ve biyomalzemelerin seçimi. Müh Bilim Tasarım Derg, 2(3): 303-311.
  • Joshi T, Sharma R, Mittal VK, Gupta V, Krishan G. 2022. Dynamic analysis of hip prosthesis using different biocompatible alloys. ASME Open J Eng, 1. https://doi.org/10.1115/1.4053417
  • Matias M, Zenha H, Costa H. 2017. Three-dimensional printing: custom-made implants for craniomaxillofacial reconstructive surgery. Craniomaxillofac Trauma Reconstr, 10(2): 89-98.
  • Nemtoi A, Covrig V, Nemtoi A, Stoica G, Vatavu R, Haba D, Zetu I. 2022. Custom-made direct metal laser sintering titanium subperiosteal implants in oral and maxillofacial surgery for severe bone deficient patients—a pilot study. Diagnostics, 12(10): 2531. https://doi.org/10.3390/diagnostics12102531
  • Saini M, Singh Y, Arora P, Arora V, Jain K. 2015. Implant biomaterials: a comprehensive review. World J Clin Cases, 3(1): 52-57.
  • Subaşı M, Karataş Ç. 2012. Titanyum ve titanyum alaşımlarından yapılan implantlar üzerine inceleme. Politeknik Derg, 15(2): 87-103.
  • Şap E, Çelik H. 2012. Kobalt esaslı alaşımların mikroyapı ve mekanik özelliklerine Ti ve Mn ilavesinin etkisinin incelenmesi. Makine Tekn Elektron Derg, 9(3): 25-33.
  • Şap E, Çelik H. 2013. Co-Cr-Mo esaslı alaşımın özelliklerine bazı metallerin etkisinin incelenmesi. Doğa Fen Bilim Derg, 2(2): pp: 1-6.
  • Şap S, Şap E, Kırık İ. 2019. Titanyum ve alaşımlarının biyomalzeme olarak kullanılması, III. Uluslararası Battalgazi Bilimsel Çalışmalar Kongresi, Malatya, Türkiye, pp: 1052.
  • Uzun İH, Bayındır F. 2010. Dental uygulamalarda titanyum ve özellikleri. Atatürk Üniv Diş Hek Fak Derg, 3: 213-220.
  • Ventola CL. 2014. Medical applications for 3D printing: current and projected uses. Pharm Ther, 39(10): 704-711.
  • Wong KC. 2016. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev, 8: 57-66.
  • Yao Y, Mo Z, Wu G, Guo J, Li J, Wang L, Fan Y. 2021. A personalized 3D-printed plate for tibiotalocalcaneal arthrodesis: design, fabrication, biomechanical evaluation and postoperative assessment. Comput Biol Med, 133: 104368.
  • Yılmaz H. 1998. Titanyum ve protetik diş tedavisinde kullanımı. Atatürk Üniv Diş Hek Fak Derg, 8(1): 1-6.

Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing

Year 2025, Volume: 8 Issue: 4, 999 - 1006, 15.07.2025
https://doi.org/10.34248/bsengineering.1641111

Abstract

Customized implants offer many advantages in medical implant applications. Material selection from the limited biocompatible material choices plays a crucial role in the success of the treatment. In this study, we compare the results obtained from dynamic fatigue testing and finite element analysis of raw materials planned for use in personalized implant systems which were made possible by the advancements in production technologies and their widespread adoption in the medical sector. The study first discusses the concept of customized implants and the materials necessary for these implants. Multiple test samples were then produced using subtractive and additive manufacturing methods according to specified dimensions using the selected materials. Static and dynamic tests were applied to the produced samples. The cobalt-chromium alloy demonstrated the highest rupture value (5.9 kN) in static tests; furthermore, it exhibited the highest value (562,189 cycles) when the rupture cycle was analyzed in dynamic tests. The results from these tests were evaluated in terms of materials and manufacturing methods. Based on the evaluations, CoCr was identified as a more durable material, and in terms of manufacturing methods, parts produced by subtractive manufacturing were found to be more durable.

References

  • Aherwar A, Singh AK, Patnaik A. 2016. Cobalt based alloy: a better choice biomaterial for hip implants. Trends Biomater Artif Organs, 30(1), pp: 1-7.
  • Al Jabbari YS. 2014. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J Adv Prosthodont, 6(2): 138-145.
  • Brăileanu PI, Simion I, Bou-Said B, Crişan N. 2018. Custom hip implant design optimisation, 2018 19th Int Conf Res Educ Mechatron, Delft, NL, pp: 58-63.
  • Çetiner D, Tazegül O, Atar E, Çimenoğlu H. 2014. Biyomedikal kobalt-krom alaşımı üzerinde oluşturulan TiO2 tabakasının karakterizasyonu ve biyoaktivitesinin incelenmesi. Müh Bilim Tasarım Derg, 2(3): 171-174.
  • de Jong IJ, Lexis MA, Slegers K, Tuijthof GJ. 2024. Medical device regulation: requirements for occupational therapists in The Netherlands who prescribe and manufacture custom-made devices. Disabil Rehabil Assist Technol, 19(4): 1415-1423.
  • de Viteri VS, Fuentes E. 2013. Titanium and titanium alloys as biomaterials. Tribol Fundam Adv, 1(5): 154-181.
  • Du R, Su YX, Yan Y, Choi WS, Yang WF, Zhang C, Chen X, Curtin JP, Ouyang J, Zhang B. 2020. A systematic approach for making 3D-printed patient-specific implants for craniomaxillofacial reconstruction. Eng, 6(11): 1291-1301.
  • Gür AK, Taşkın M. 2004. Metalik biyomalzemeler ve biyouyum. Fırat Üniv Doğu Araş Derg, 2(2): 106-113.
  • Güven Ş. 2014. Biyouyumluluk ve biyomalzemelerin seçimi. Müh Bilim Tasarım Derg, 2(3): 303-311.
  • Joshi T, Sharma R, Mittal VK, Gupta V, Krishan G. 2022. Dynamic analysis of hip prosthesis using different biocompatible alloys. ASME Open J Eng, 1. https://doi.org/10.1115/1.4053417
  • Matias M, Zenha H, Costa H. 2017. Three-dimensional printing: custom-made implants for craniomaxillofacial reconstructive surgery. Craniomaxillofac Trauma Reconstr, 10(2): 89-98.
  • Nemtoi A, Covrig V, Nemtoi A, Stoica G, Vatavu R, Haba D, Zetu I. 2022. Custom-made direct metal laser sintering titanium subperiosteal implants in oral and maxillofacial surgery for severe bone deficient patients—a pilot study. Diagnostics, 12(10): 2531. https://doi.org/10.3390/diagnostics12102531
  • Saini M, Singh Y, Arora P, Arora V, Jain K. 2015. Implant biomaterials: a comprehensive review. World J Clin Cases, 3(1): 52-57.
  • Subaşı M, Karataş Ç. 2012. Titanyum ve titanyum alaşımlarından yapılan implantlar üzerine inceleme. Politeknik Derg, 15(2): 87-103.
  • Şap E, Çelik H. 2012. Kobalt esaslı alaşımların mikroyapı ve mekanik özelliklerine Ti ve Mn ilavesinin etkisinin incelenmesi. Makine Tekn Elektron Derg, 9(3): 25-33.
  • Şap E, Çelik H. 2013. Co-Cr-Mo esaslı alaşımın özelliklerine bazı metallerin etkisinin incelenmesi. Doğa Fen Bilim Derg, 2(2): pp: 1-6.
  • Şap S, Şap E, Kırık İ. 2019. Titanyum ve alaşımlarının biyomalzeme olarak kullanılması, III. Uluslararası Battalgazi Bilimsel Çalışmalar Kongresi, Malatya, Türkiye, pp: 1052.
  • Uzun İH, Bayındır F. 2010. Dental uygulamalarda titanyum ve özellikleri. Atatürk Üniv Diş Hek Fak Derg, 3: 213-220.
  • Ventola CL. 2014. Medical applications for 3D printing: current and projected uses. Pharm Ther, 39(10): 704-711.
  • Wong KC. 2016. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev, 8: 57-66.
  • Yao Y, Mo Z, Wu G, Guo J, Li J, Wang L, Fan Y. 2021. A personalized 3D-printed plate for tibiotalocalcaneal arthrodesis: design, fabrication, biomechanical evaluation and postoperative assessment. Comput Biol Med, 133: 104368.
  • Yılmaz H. 1998. Titanyum ve protetik diş tedavisinde kullanımı. Atatürk Üniv Diş Hek Fak Derg, 8(1): 1-6.
There are 22 citations in total.

Details

Primary Language English
Subjects Biomaterials in Biomedical Engineering, Solid Mechanics, Additive Manufacturing
Journal Section Research Articles
Authors

Vildan Fadime Demirezen 0000-0002-4640-6861

Kenan Işık 0000-0002-0973-5180

Early Pub Date July 9, 2025
Publication Date July 15, 2025
Submission Date February 17, 2025
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Demirezen, V. F., & Işık, K. (2025). Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing. Black Sea Journal of Engineering and Science, 8(4), 999-1006. https://doi.org/10.34248/bsengineering.1641111
AMA Demirezen VF, Işık K. Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing. BSJ Eng. Sci. July 2025;8(4):999-1006. doi:10.34248/bsengineering.1641111
Chicago Demirezen, Vildan Fadime, and Kenan Işık. “Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing”. Black Sea Journal of Engineering and Science 8, no. 4 (July 2025): 999-1006. https://doi.org/10.34248/bsengineering.1641111.
EndNote Demirezen VF, Işık K (July 1, 2025) Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing. Black Sea Journal of Engineering and Science 8 4 999–1006.
IEEE V. F. Demirezen and K. Işık, “Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing”, BSJ Eng. Sci., vol. 8, no. 4, pp. 999–1006, 2025, doi: 10.34248/bsengineering.1641111.
ISNAD Demirezen, Vildan Fadime - Işık, Kenan. “Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing”. Black Sea Journal of Engineering and Science 8/4 (July 2025), 999-1006. https://doi.org/10.34248/bsengineering.1641111.
JAMA Demirezen VF, Işık K. Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing. BSJ Eng. Sci. 2025;8:999–1006.
MLA Demirezen, Vildan Fadime and Kenan Işık. “Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing”. Black Sea Journal of Engineering and Science, vol. 8, no. 4, 2025, pp. 999-1006, doi:10.34248/bsengineering.1641111.
Vancouver Demirezen VF, Işık K. Comparison of Raw Materials Used in Customized Implant Systems through Finite Element Analysis and Dynamic Fatigue Testing. BSJ Eng. Sci. 2025;8(4):999-1006.

                                                24890