Research Article
BibTex RIS Cite

Controller Design and Simulation for Direct Current Microgrids

Year 2025, Volume: 8 Issue: 4, 927 - 936, 15.07.2025
https://doi.org/10.34248/bsengineering.1650066

Abstract

This study presents a control method to eliminate load-sharing imbalances, improve voltage regulation, and enhance system stability in direct current (DC) microgrids. The integration of renewable energy sources and the widespread adoption of distributed generation have made DC microgrids a crucial component of modern energy infrastructure. However, traditional methods based on fixed droop coefficients cannot dynamically adapt to varying operating conditions, leading to load-sharing inaccuracies and voltage deviations. To address these challenges, the developed model is equipped with an adaptive droop control algorithm designed to improve voltage regulation, enhance load-sharing accuracy, and ensure system reliability. The proposed control method employs a hierarchical structure consisting of primary and secondary control levels. The primary control level ensures local stability using inner-loop and conventional droop control strategies, while the secondary control level corrects voltage deviations and enhances load-sharing precision. The adaptive droop algorithm dynamically updates droop coefficients in real time based on system load conditions, providing more precise voltage regulation and balanced power distribution. Compared to conventional methods, this approach offers faster and more flexible responses, adapting to varying operating conditions and improving overall microgrid stability. The developed control method was tested on a DC microgrid version of the 14-bus alternating current (AC) system standardized by the Institute of Electrical and Electronics Engineers (IEEE), and its performance was verified through detailed simulations. Simulation results demonstrate that the proposed control algorithm reduces voltage fluctuations, improves load-sharing accuracy, and adapts quickly to changing system conditions. The findings reveal that the adaptive droop control approach provides a reliable and efficient solution for enhancing voltage stability and energy efficiency in DC microgrids.

References

  • Adhikari S, Tang Y, Wang P. 2016. Secondary control for DC microgrids: A review. In: Proceedings of the 2016 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 25-28 October 2016, Singapore, Singapore, pp: 1-6.
  • Al-Ismail FS. 2021. DC microgrid planning, operation, and control: A comprehensive review. IEEE Access, 9: pp: 36154-36172.
  • Aluko A, Buraimoh E, Oni OE, Davidson IE. 2022. Advanced distributed cooperative secondary control of islanded DC microgrids. Energies, 15(11): pp: 3988.
  • Biglarahmadi M, Ketabi A, Baghaee HR, Guerrero JM. 2024. Two-layer distributed control of hybrid AC/DC microgrids supplying nonlinear, unbalanced and constant-power loads. Int J Electr Power Energy Syst, 162: pp: 110298.
  • Brusso B, Bose B. 2014. Power electronics—historical perspective and my experience [history]. IEEE Ind Appl Mag, 20(2): pp: 7-81.
  • Bulut U, Muratoglu G. 2018. Renewable energy in Türkiye: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 123: pp: 240-250.
  • Choudhury S. 2020. A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for microgrid technology. Int Trans Electr Energy Syst, 30(9): pp: e12446.
  • Cucuzzella M, Trip S, De Persis C, Cheng X, Ferrara A, Van der Schaft A. 2019. A robust consensus algorithm for current sharing and voltage regulation in DC microgrids. IEEE Trans Control Syst Technol, 27(4): pp: 1583-1595.
  • Da Silva WWAG, Oliveira TR, Donoso-Garcia PF. 2020. Hybrid distributed and decentralized secondary control strategy to attain accurate power sharing and improved voltage restoration in DC microgrids. IEEE Trans Power Electron, 35(6): pp: 6458-6469.
  • Dam DH, Lee HH. 2016. An adaptive power distributed control method to ensure proportional load power sharing in DC microgrid considering equivalent line impedances. In: Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 18-22 September 2016, Milwaukee, WI, USA, USA, pp: 1-6.
  • Dechamps P. 2023. The IEA World Energy Outlook 2022 – a brief analysis and implications. Eur Energy Clim J, 11(3): pp: 100-103.
  • Dragicevic T, Lu X, Vasquez JC, Guerrero JM. 2016. DC microgrids- Part I: A review of control strategies and stabilization techniques. IEEE Trans Power Electron, 31(7): pp: 4876-4891.
  • Elmouatamid A, Ouladsine R, Bakhouya M, El Kamoun N, Khaidar M, Zine-Dine K. 2020. Review of control and energy management approaches in micro-grid systems. Energies, 14(1): pp: 168.
  • Fang J, Shuai Z, Zhang X, Shen X, Shen ZJ. 2019. Secondary power sharing regulation strategy for a DC microgrid via maximum loading factor. IEEE Trans Power Electron, 34(12): pp: 11856-11867.
  • Gao F, Kang R, Cao J, Yang T. 2019. Primary and secondary control in DC microgrids: a review. J Mod Power Syst Clean Energy, 7(2): pp: 227-242.
  • Ghanimi HMJ, Ghoreishy H, Mirimani SM. 2024. Enhancing DC microgrids cluster performance with distributed event-triggered consensus protocols. e-Prime Adv Electr Eng Electron Energy, 10: pp: 100773.
  • Guarnieri M. 2018. Revolving and evolving—early DC machines [historical]. IEEE Ind Electron Mag, 12(3): pp: 38-43.
  • Guerrero JM, Vasquez JC, Matas J, De Vicuña LG, Castilla M. 2011. Hierarchical control of droop-controlled AC and DC microgrids- a general approach toward standardization. IEEE Trans Ind Electron, 58(1): pp: 158-172.
  • Hamad B, Al-Durra A, Zeineldin H, Mohamed YARI. 2024. Robust distributed secondary control for DC microgrids enhancing stability and communication delay tolerance. IEEE Trans Energy Convers, Early Access: pp: 1-16.
  • Hatziargyriou N, Dimeas A, Vasilakis N, Lagos D, Kontou A. 2020. The Kythnos microgrid: a 20-year history. IEEE Electrif Mag, 8(4): pp: 46-54.
  • Hatziargyriou N. 2014. Microgrids: architectures and control. Wiley-IEEE Press, Chichester, UK, pp: 317.
  • Hou Y, Liu M, Shen N. 2024. A simulation research method for data injection attacks on DC microgrids. In: Proceedings of the 2024 China Automation Congress (CAC), November 2024, Beijing, China, China, pp: 2460-2465.
  • Hu J, Duan J, Ma H, Chow MY. 2018. Distributed adaptive droop control for optimal power dispatch in DC microgrid. IEEE Trans Ind Electron, 65(1): pp: 778-789.
  • Jasim AM, Jasim BH, Bureš V, Mikulecký P. 2022. A new decentralized robust secondary control for smart islanded microgrids. Sensors (Basel), 22(22): pp: 8709.
  • Kaysal A, Köroğlu S, Oğuz Y. 2023. Adaptive droop controller design for energy management system in DC microgrid architectures. Pamukkale Univ J Eng Sci, 29(7): pp: 692-700.
  • Kaysal A. 2023. Mikro şebekeler için hiyerarşik enerji yönetim sistemi tasarımı ve uygulaması. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, Türkiye, pp: 149.
  • Kirtay E. 2010. Current status and future prospects of renewable energy use in Türkiye. Energy Explor Exploit, 28(5): pp: 411-431.
  • Kumar J, Agarwal A, Agarwal V. 2019. A review on overall control of DC microgrids. J Energy Storage, 21: pp: 113-138.
  • Küçük G, Yüce Dural B. 2022. Avrupa Yeşil Mutabakatı ve yeşil ekonomiye geçiş: enerji senaryoları üzerinden bir değerlendirme. Anadolu Univ J Soc Sci, 22(1): pp: 137-156.
  • Liu HP, Hu J, Li Z, Chan KW, Guerrero JM. 2020. A novel droop control method based on virtual frequency in DC microgrid. IEEE Trans Ind Electron, 67(10): pp: 8446-8456.
  • Lotfi H, Khodaei A. 2017. AC versus DC microgrid planning. IEEE Trans Smart Grid, 8(1): pp: 296-304.
  • Moradi M, Heydari M, Zarei SF. 2023. An overview on consensus-based distributed secondary control schemes in DC microgrids. Electr Power Syst Res, 225: pp: 109870.
  • Mosa MA, Ali AA. 2021. Energy management system of low voltage DC microgrid using mixed-integer nonlinear programming and a global optimization technique. Electr Power Syst Res, 192: pp: 106971.
  • Nahata P, La Bella A, Scattolini R, Ferrari-Trecate G. 2020. Hierarchical control in islanded DC microgrids with flexible structures. IEEE Trans Control Syst Technol, 29(6): pp: 2379-2392.
  • Nasirian V, Davoudi A, Lewis FL, Guerrero JM. 2014. Distributed adaptive droop control for DC distribution systems. IEEE Trans Energy Convers, 29(4): pp: 944-956.
  • Planas E, Andreu J, Gárate JI, Martínez De Alegría I, Ibarra E. 2015. AC and DC technology in microgrids: a review. Renew Sustain Energy Rev, 43: pp: 726-749.
  • Polleux L, Guerassimoff G, Marmorat JP, Sandoval-Moreno J, Schuhler T. 2022. An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints. Renew Sustain Energy Rev, 155: pp: 111955.
  • Pourbehzadi M, Niknam T, Aghaei J, Mokryani G, Shafie-khah M, Catalão JPS. 2019. Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: a comprehensive review. Int J Electr Power Energy Syst, 109: pp: 139-159.
  • Rashad M, Raoof U, Ashraf M, Ashfaq Ahmed B. 2018. Proportional load sharing and stability of DC microgrid with distributed architecture using SM controller. Math Probl Eng, 2018: pp: 1-16.
  • Saygin D, Tör OB, Cebeci ME, Teimourzadeh S, Godron P. 2021. Increasing Türkiye’s power system flexibility for grid integration of 50% renewable energy share. Energy Strategy Rev, 34: pp: 100625.
  • Shafiee Q, Dragičević T, Vasquez JC, Guerrero JM. 2014. Hierarchical control for multiple DC-microgrids clusters. IEEE Trans Energy Convers, 29(4): pp: 922-933.
  • Shafiee Q, Nasirian V, Guerrero JM, Lewis FL, Davoudi A. 2014. Team oriented adaptive droop control for autonomous AC microgrids. In: Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), October 2014, Dallas, TX, USA, USA, pp: 1861-1867.
  • Shuai Z, Fang J, Ning F, Shen ZJ. 2018. Hierarchical structure and bus voltage control of DC microgrid. Renew Sustain Energy Rev, 82: pp: 3670-3682.
  • Taye BA, Choudhury NBD. 2023. A dynamic droop control for a DC microgrid to enhance voltage profile and proportional current sharing. Electr Power Syst Res, 221: pp: 109438.
  • Vasquez J, Guerrero J, Miret J, Castilla M, Garcia De Vicuna L. 2010. Hierarchical control of intelligent microgrids. IEEE Ind Electron Mag, 4(4): pp: 23-29.
  • Vu TV, Perkins D, Diaz F, Gonsoulin D, Edrington CS, El-Mezyani T. 2017. Robust adaptive droop control for DC microgrids. Electr Power Syst Res, 146: pp: 95-106.
  • Wang P, Qin Z, Yuan J, Blaabjerg F. 2024. Dual active bridge converter and its control. In: Control of Power Electronic Converters and Systems: Volume 4, Elsevier Academic Press, Burlington, MA, USA, pp: 71-100.
  • Yamashita DY, Vechiu I, Gaubert JP. 2020. A review of hierarchical control for building microgrids. Renew Sustain Energy Rev, 118: pp: 109523.
  • Zia MF, Elbouchikhi E, Benbouzid M. 2018. Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl Energy, 222: pp: 1033-1055.

Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu

Year 2025, Volume: 8 Issue: 4, 927 - 936, 15.07.2025
https://doi.org/10.34248/bsengineering.1650066

Abstract

Bu çalışma, doğru akım (DA) mikro şebekelerde yük paylaşım dengesizliklerini gidermek, voltaj regülasyonunu iyileştirmek ve sistem kararlılığını artırmak amacıyla bir kontrol yöntemi önerilmiştir. Yenilenebilir enerji kaynaklarının entegrasyonu ve dağıtık üretim sistemlerinin yaygınlaşması DA mikro şebekeleri modern enerji altyapısında önemli bir konuma taşımıştır. Ancak, sabit eğim (droop) katsayılarına dayalı geleneksel yöntemler, değişen işletme koşullarına uyum sağlayamadığı için yük paylaşımında dengesizlikler ve voltaj sapmaları meydana gelmektedir. Bu kapsamda, geliştirilen model, adaptif droop kontrol algoritması ile donatılmış olup, voltaj regülasyonu, yük paylaşım doğruluğu ve sistem güvenilirliğini artırmak üzere tasarlanmıştır. Önerilen kontrol yöntemi, birincil ve ikincil kontrol seviyelerinden oluşan hiyerarşik bir yapı kullanmaktadır. Birincil kontrol, iç döngü ve geleneksel droop kontrol stratejileri ile yerel kararlılığı sağlarken, ikincil kontrol voltaj sapmalarını düzelterek yük paylaşım hassasiyetini artırmaktadır. Adaptif droop algoritması, sistem yük koşullarına bağlı olarak droop katsayılarını gerçek zamanlı güncelleyerek voltaj regülasyonunda daha hassas ve dengeli bir güç paylaşımı sunmaktadır. Geleneksel yöntemlere kıyasla daha hızlı ve esnek bir tepki verebilen bu yaklaşım, değişen işletme koşullarına uyum sağlayarak mikro şebekenin genel kararlılığını iyileştirmektedir. Geliştirilen kontrol yöntemi, IEEE tarafından standartları belirlenen 14-baralı alternatif akım (AA) sisteminin DA mikro şebekeye dönüştürülmüş modeli üzerinde test edilmiş ve performansı detaylı simülasyonlarla doğrulanmıştır. Simülasyon sonuçları, önerilen kontrol algoritmasının voltaj dalgalanmalarını azalttığını, yük paylaşım doğruluğunu artırdığını ve değişen sistem koşullarına hızlı uyum sağladığını göstermektedir. Sonuçlar, adaptif droop kontrol yönteminin DA mikro şebekelerde güvenilirlik ve enerji verimliliğini artıran yenilikçi bir çözüm sunduğunu ortaya koymaktadır.

References

  • Adhikari S, Tang Y, Wang P. 2016. Secondary control for DC microgrids: A review. In: Proceedings of the 2016 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 25-28 October 2016, Singapore, Singapore, pp: 1-6.
  • Al-Ismail FS. 2021. DC microgrid planning, operation, and control: A comprehensive review. IEEE Access, 9: pp: 36154-36172.
  • Aluko A, Buraimoh E, Oni OE, Davidson IE. 2022. Advanced distributed cooperative secondary control of islanded DC microgrids. Energies, 15(11): pp: 3988.
  • Biglarahmadi M, Ketabi A, Baghaee HR, Guerrero JM. 2024. Two-layer distributed control of hybrid AC/DC microgrids supplying nonlinear, unbalanced and constant-power loads. Int J Electr Power Energy Syst, 162: pp: 110298.
  • Brusso B, Bose B. 2014. Power electronics—historical perspective and my experience [history]. IEEE Ind Appl Mag, 20(2): pp: 7-81.
  • Bulut U, Muratoglu G. 2018. Renewable energy in Türkiye: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 123: pp: 240-250.
  • Choudhury S. 2020. A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for microgrid technology. Int Trans Electr Energy Syst, 30(9): pp: e12446.
  • Cucuzzella M, Trip S, De Persis C, Cheng X, Ferrara A, Van der Schaft A. 2019. A robust consensus algorithm for current sharing and voltage regulation in DC microgrids. IEEE Trans Control Syst Technol, 27(4): pp: 1583-1595.
  • Da Silva WWAG, Oliveira TR, Donoso-Garcia PF. 2020. Hybrid distributed and decentralized secondary control strategy to attain accurate power sharing and improved voltage restoration in DC microgrids. IEEE Trans Power Electron, 35(6): pp: 6458-6469.
  • Dam DH, Lee HH. 2016. An adaptive power distributed control method to ensure proportional load power sharing in DC microgrid considering equivalent line impedances. In: Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 18-22 September 2016, Milwaukee, WI, USA, USA, pp: 1-6.
  • Dechamps P. 2023. The IEA World Energy Outlook 2022 – a brief analysis and implications. Eur Energy Clim J, 11(3): pp: 100-103.
  • Dragicevic T, Lu X, Vasquez JC, Guerrero JM. 2016. DC microgrids- Part I: A review of control strategies and stabilization techniques. IEEE Trans Power Electron, 31(7): pp: 4876-4891.
  • Elmouatamid A, Ouladsine R, Bakhouya M, El Kamoun N, Khaidar M, Zine-Dine K. 2020. Review of control and energy management approaches in micro-grid systems. Energies, 14(1): pp: 168.
  • Fang J, Shuai Z, Zhang X, Shen X, Shen ZJ. 2019. Secondary power sharing regulation strategy for a DC microgrid via maximum loading factor. IEEE Trans Power Electron, 34(12): pp: 11856-11867.
  • Gao F, Kang R, Cao J, Yang T. 2019. Primary and secondary control in DC microgrids: a review. J Mod Power Syst Clean Energy, 7(2): pp: 227-242.
  • Ghanimi HMJ, Ghoreishy H, Mirimani SM. 2024. Enhancing DC microgrids cluster performance with distributed event-triggered consensus protocols. e-Prime Adv Electr Eng Electron Energy, 10: pp: 100773.
  • Guarnieri M. 2018. Revolving and evolving—early DC machines [historical]. IEEE Ind Electron Mag, 12(3): pp: 38-43.
  • Guerrero JM, Vasquez JC, Matas J, De Vicuña LG, Castilla M. 2011. Hierarchical control of droop-controlled AC and DC microgrids- a general approach toward standardization. IEEE Trans Ind Electron, 58(1): pp: 158-172.
  • Hamad B, Al-Durra A, Zeineldin H, Mohamed YARI. 2024. Robust distributed secondary control for DC microgrids enhancing stability and communication delay tolerance. IEEE Trans Energy Convers, Early Access: pp: 1-16.
  • Hatziargyriou N, Dimeas A, Vasilakis N, Lagos D, Kontou A. 2020. The Kythnos microgrid: a 20-year history. IEEE Electrif Mag, 8(4): pp: 46-54.
  • Hatziargyriou N. 2014. Microgrids: architectures and control. Wiley-IEEE Press, Chichester, UK, pp: 317.
  • Hou Y, Liu M, Shen N. 2024. A simulation research method for data injection attacks on DC microgrids. In: Proceedings of the 2024 China Automation Congress (CAC), November 2024, Beijing, China, China, pp: 2460-2465.
  • Hu J, Duan J, Ma H, Chow MY. 2018. Distributed adaptive droop control for optimal power dispatch in DC microgrid. IEEE Trans Ind Electron, 65(1): pp: 778-789.
  • Jasim AM, Jasim BH, Bureš V, Mikulecký P. 2022. A new decentralized robust secondary control for smart islanded microgrids. Sensors (Basel), 22(22): pp: 8709.
  • Kaysal A, Köroğlu S, Oğuz Y. 2023. Adaptive droop controller design for energy management system in DC microgrid architectures. Pamukkale Univ J Eng Sci, 29(7): pp: 692-700.
  • Kaysal A. 2023. Mikro şebekeler için hiyerarşik enerji yönetim sistemi tasarımı ve uygulaması. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, Türkiye, pp: 149.
  • Kirtay E. 2010. Current status and future prospects of renewable energy use in Türkiye. Energy Explor Exploit, 28(5): pp: 411-431.
  • Kumar J, Agarwal A, Agarwal V. 2019. A review on overall control of DC microgrids. J Energy Storage, 21: pp: 113-138.
  • Küçük G, Yüce Dural B. 2022. Avrupa Yeşil Mutabakatı ve yeşil ekonomiye geçiş: enerji senaryoları üzerinden bir değerlendirme. Anadolu Univ J Soc Sci, 22(1): pp: 137-156.
  • Liu HP, Hu J, Li Z, Chan KW, Guerrero JM. 2020. A novel droop control method based on virtual frequency in DC microgrid. IEEE Trans Ind Electron, 67(10): pp: 8446-8456.
  • Lotfi H, Khodaei A. 2017. AC versus DC microgrid planning. IEEE Trans Smart Grid, 8(1): pp: 296-304.
  • Moradi M, Heydari M, Zarei SF. 2023. An overview on consensus-based distributed secondary control schemes in DC microgrids. Electr Power Syst Res, 225: pp: 109870.
  • Mosa MA, Ali AA. 2021. Energy management system of low voltage DC microgrid using mixed-integer nonlinear programming and a global optimization technique. Electr Power Syst Res, 192: pp: 106971.
  • Nahata P, La Bella A, Scattolini R, Ferrari-Trecate G. 2020. Hierarchical control in islanded DC microgrids with flexible structures. IEEE Trans Control Syst Technol, 29(6): pp: 2379-2392.
  • Nasirian V, Davoudi A, Lewis FL, Guerrero JM. 2014. Distributed adaptive droop control for DC distribution systems. IEEE Trans Energy Convers, 29(4): pp: 944-956.
  • Planas E, Andreu J, Gárate JI, Martínez De Alegría I, Ibarra E. 2015. AC and DC technology in microgrids: a review. Renew Sustain Energy Rev, 43: pp: 726-749.
  • Polleux L, Guerassimoff G, Marmorat JP, Sandoval-Moreno J, Schuhler T. 2022. An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints. Renew Sustain Energy Rev, 155: pp: 111955.
  • Pourbehzadi M, Niknam T, Aghaei J, Mokryani G, Shafie-khah M, Catalão JPS. 2019. Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: a comprehensive review. Int J Electr Power Energy Syst, 109: pp: 139-159.
  • Rashad M, Raoof U, Ashraf M, Ashfaq Ahmed B. 2018. Proportional load sharing and stability of DC microgrid with distributed architecture using SM controller. Math Probl Eng, 2018: pp: 1-16.
  • Saygin D, Tör OB, Cebeci ME, Teimourzadeh S, Godron P. 2021. Increasing Türkiye’s power system flexibility for grid integration of 50% renewable energy share. Energy Strategy Rev, 34: pp: 100625.
  • Shafiee Q, Dragičević T, Vasquez JC, Guerrero JM. 2014. Hierarchical control for multiple DC-microgrids clusters. IEEE Trans Energy Convers, 29(4): pp: 922-933.
  • Shafiee Q, Nasirian V, Guerrero JM, Lewis FL, Davoudi A. 2014. Team oriented adaptive droop control for autonomous AC microgrids. In: Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), October 2014, Dallas, TX, USA, USA, pp: 1861-1867.
  • Shuai Z, Fang J, Ning F, Shen ZJ. 2018. Hierarchical structure and bus voltage control of DC microgrid. Renew Sustain Energy Rev, 82: pp: 3670-3682.
  • Taye BA, Choudhury NBD. 2023. A dynamic droop control for a DC microgrid to enhance voltage profile and proportional current sharing. Electr Power Syst Res, 221: pp: 109438.
  • Vasquez J, Guerrero J, Miret J, Castilla M, Garcia De Vicuna L. 2010. Hierarchical control of intelligent microgrids. IEEE Ind Electron Mag, 4(4): pp: 23-29.
  • Vu TV, Perkins D, Diaz F, Gonsoulin D, Edrington CS, El-Mezyani T. 2017. Robust adaptive droop control for DC microgrids. Electr Power Syst Res, 146: pp: 95-106.
  • Wang P, Qin Z, Yuan J, Blaabjerg F. 2024. Dual active bridge converter and its control. In: Control of Power Electronic Converters and Systems: Volume 4, Elsevier Academic Press, Burlington, MA, USA, pp: 71-100.
  • Yamashita DY, Vechiu I, Gaubert JP. 2020. A review of hierarchical control for building microgrids. Renew Sustain Energy Rev, 118: pp: 109523.
  • Zia MF, Elbouchikhi E, Benbouzid M. 2018. Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl Energy, 222: pp: 1033-1055.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Transmission, Networks and Systems, Power Plants, Electrical Engineering (Other)
Journal Section Research Articles
Authors

Ahmet Alperen Özbek 0009-0006-0525-5274

Tuncay Altun 0000-0003-1499-3384

Kenan Altun 0000-0001-7419-1901

Early Pub Date May 25, 2025
Publication Date July 15, 2025
Submission Date March 3, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Özbek, A. A., Altun, T., & Altun, K. (2025). Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu. Black Sea Journal of Engineering and Science, 8(4), 927-936. https://doi.org/10.34248/bsengineering.1650066
AMA Özbek AA, Altun T, Altun K. Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu. BSJ Eng. Sci. July 2025;8(4):927-936. doi:10.34248/bsengineering.1650066
Chicago Özbek, Ahmet Alperen, Tuncay Altun, and Kenan Altun. “Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı Ve Simülasyonu”. Black Sea Journal of Engineering and Science 8, no. 4 (July 2025): 927-36. https://doi.org/10.34248/bsengineering.1650066.
EndNote Özbek AA, Altun T, Altun K (July 1, 2025) Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu. Black Sea Journal of Engineering and Science 8 4 927–936.
IEEE A. A. Özbek, T. Altun, and K. Altun, “Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu”, BSJ Eng. Sci., vol. 8, no. 4, pp. 927–936, 2025, doi: 10.34248/bsengineering.1650066.
ISNAD Özbek, Ahmet Alperen et al. “Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı Ve Simülasyonu”. Black Sea Journal of Engineering and Science 8/4 (July 2025), 927-936. https://doi.org/10.34248/bsengineering.1650066.
JAMA Özbek AA, Altun T, Altun K. Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu. BSJ Eng. Sci. 2025;8:927–936.
MLA Özbek, Ahmet Alperen et al. “Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı Ve Simülasyonu”. Black Sea Journal of Engineering and Science, vol. 8, no. 4, 2025, pp. 927-36, doi:10.34248/bsengineering.1650066.
Vancouver Özbek AA, Altun T, Altun K. Doğru Akım Mikro Şebekeleri İçin Kontrolör Tasarımı ve Simülasyonu. BSJ Eng. Sci. 2025;8(4):927-36.

                                                24890