Research Article
BibTex RIS Cite

Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir

Year 2025, Volume: 8 Issue: 4, 1127 - 1133, 15.07.2025

Abstract

This study investigates the thermoluminescence (TL) properties and dosimetric performance of calcite samples, with particular emphasis on dose response, heating rate (HR) effects, and reusability (RU). TL measurements were carried out using a Lexsyg Smart TL/OSL reader equipped with a ⁹⁰Sr/⁹⁰Y beta source. The dose-response relationship was analyzed by irradiating the sample with beta doses ranging from 0.1 to 500 Gy, revealed a progressive increase in TL intensity. The TL glow curve exhibited two broad peaks at 100-116 °C and 238 °C, with a shift in the first peak temperature at higher doses. A fitting procedure was applied to analyze the dose-response characteristics of the material, revealing distinct b values for different dose ranges. The effect of HR on the glow curve was also studied, showing an anomalous increase in TL intensity with rising HRs, contrary to expectations from the standard theoretical model. Additionally, the RU of the material was assessed by performing 10 consecutive TL measurements after a 50 Gy irradiation, demonstrating minimal degradation in TL intensity, with low deviations from the mean and first values. This remarkable RU is crucial for ensuring the material's effectiveness in long-term dosimetric applications.

Thanks

S. B. would like to express gratitude to Assoc. Prof. Ayşe Orhan for providing the natural samples and XRD results. The author is also grateful to Prof. Mustafa Topaksu, Dr. Mehmet Oğlakçı, and Aya Barad for their valuable discussions on the TL results.

References

  • Aitken MJ. 1985. Thermoluminescence Dating. Academic Press, London, UK, pp: 26.
  • Akça S. 2020. Determination of thermoluminescence properties of ZnB₂O₄:Tm³⁺, Li⁺ for dosimetric purposes. Appl Radiat Isot, 157: 109041.
  • Bailiff IK, Stepanenko VF, Gosku HY, Bøtter-Jensen L, Brodski L, Chumak V, Correcher V, Delgado A, Golikov V, Jungner H, Khamidova LG, Kolizshenkov TV, Likhtarev I, Meckbach R, Petrov SA, Sholom S. 2004. Comparison of retrospective luminescence dosimetry with computational modeling in two highly contaminated settlements downwind of the Chernobyl NPP. Health Phys, 86: 25–41.
  • Bulcar K, Oglakci M, Altowyan AS, Bilgin R, Yucel A, Sezer S, Hakami J, Depci T, Topaksu M, Can N. 2024. Exploring beta irradiation responses in Sr₂⁺-doped hydroxyapatite: A thermoluminescence study. Ceram Int, 50(17B): 31300–31312.
  • Chang LLY, Howie RA, Zussman J. 1998. Rock Forming Minerals, Non-silicates—Sulphates, Carbonates, Phosphates, Halides, Vol. 5. Geological Society of London, London, UK, 2nd ed, pp:25.
  • Chen R, Kirsh Y. 1981. The Analysis of Thermally Stimulated Processes. Pergamon Press, Oxford, UK, pp: 53.
  • Chen R, McKeever SWS. 1997. Theory of Thermoluminescence and Related Phenomena. World Scientific, Singapore, pp: 42.
  • Ducruet JM, Vass I. 2009. Thermoluminescence: experimental. Photosynth Res, 101: 195–204.
  • El-Faramawy N, Alazab HA, Gad A, Sabry M. 2022. Study of the thermoluminescence kinetic parameters of a β-irradiated natural calcite. Radiat Phys Chem, 190: 109793.
  • Kim KB, Hong DG. 2014. Kinetic parameters, bleaching and radiation response of thermoluminescence glow peaks separated by deconvolution on Korean calcite. Radiat Phys Chem, 103: 16–21.
  • Kirsh Y. 1992. Kinetic analysis of thermoluminescence. Phys Status Solidi A, 129(1): 15–48.
  • Kitis G, Spiropulu M, Papadopoulos J, Charalambous S. 1993. Heating rate effects on the TL glow-peaks of three thermoluminescent phosphors. Nucl Instrum Meth Phys Res A, 73: 367–372.
  • Mandowski A, Bos AJJ. 2011. Explanation of anomalous heating rate dependence of thermoluminescence in YPO₄:Ce³⁺, Sm³⁺ based on the semi-localized transition (SLT) model. Radiat Meas, 46: 1376–1379.
  • Mandowski A. 2005. Semi-localized transitions model for thermoluminescence. J Phys D Appl Phys, 38: 17–21.
  • McKeever SWS, Moscovitch M, Townsend PD. 1995. Thermoluminescence Dosimetry Materials: Properties and Uses. Nuclear Technology Publishing, Ashford, UK, pp: 63.
  • McKeever SWS. 1985. Thermoluminescence of Solids. Cambridge University Press, Cambridge, UK, pp: 41.
  • Oglakci M, Akça-Özalp S, Portakal-Uçar ZG, Correcher V, Benavente JF, Sonsuz M, Can N, Halefoglu YZ, Topaksu M. 2025. Thermoluminescence study of Nd³⁺ doped lanthanum tri-borate phosphor. J Alloys Compd, 1013: 178570.
  • Oglakci M, Portakal-Uçar ZG, Akça-Özalp S, Correcher V, Benavente JF, Sonsuz M, Can N, Halefoglu YZ, Topaksu M. 2023. Thermoluminescence behavior of Ce³⁺-doped lanthanum tri-borate phosphor for dosimetry applications. Ceram Int, 49(22B): 36092–36102.
  • Orhan A, Orhan A. 2018. Investigation of mineralogical, geochemical and origin of skarn mineralization related plutonic rocks from the Kaman region (Kırşehir, Central Anatolia). NEUBAP Project Report No: 15/2F7, pp: 85.
  • Orhan A. 2020. Mineralogy, fluid inclusions and carbon isotopes of the Kaman iron deposits, Central Anatolia, Turkey: Implication for ore genesis and hydrothermal evolution. Ore Geol Rev, 127: 103808.
  • Pagonis V, Blohm L, Brengle M, Mayonado G, Woglam P. 2013. Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model. Radiat Meas, 51–52: 40–47.
  • Ponnusamy V, Ramasamy V, Jose MT, Anandalakshmi K. 2012. Effect of annealing on natural calcitic crystals—A thermostimulated luminescence (TSL) study. J Lumin, 132(4): 1063–1075.
  • Portakal Uçar ZG. 2021. Thermoluminescence characteristics and kinetic analysis of beta irradiated Ca₄LaO(BO₃)₃ phosphor. Cumhuriyet Sci J, 42(3): 702–714.
  • Soliman C, Metwally SM. 2006. Thermoluminescence of the green emission band of calcite. Radiat Eff Defects Solids, 161(10): 607–613.
  • Toktamiş H, Toktamiş D, Yazıcı AN. 2014. Thermoluminescence studies of calcite extracted from natural sand used in making roasted chickpea. J Lumin, 153: 375–381.
  • Townsend PD, Kirsh Y. 1989. Spectral measurement during thermoluminescence—An essential requirement. Contemp Phys, 30: 337–354.
  • Urbina M, Millán A, Beneitez P, Calderón T. 1998. Dose rate effect in calcite. J Lumin, 79(1): 21–28.
  • Wintle AG. 1978. A thermoluminescence dating study of some Quaternary calcite: potential and problems. Can J Earth Sci, 15(12): 1884–1893.

Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir

Year 2025, Volume: 8 Issue: 4, 1127 - 1133, 15.07.2025

Abstract

This study investigates the thermoluminescence (TL) properties and dosimetric performance of calcite samples, with particular emphasis on dose response, heating rate (HR) effects, and reusability (RU). TL measurements were carried out using a Lexsyg Smart TL/OSL reader equipped with a ⁹⁰Sr/⁹⁰Y beta source. The dose-response relationship was analyzed by irradiating the sample with beta doses ranging from 0.1 to 500 Gy, revealed a progressive increase in TL intensity. The TL glow curve exhibited two broad peaks at 100-116 °C and 238 °C, with a shift in the first peak temperature at higher doses. A fitting procedure was applied to analyze the dose-response characteristics of the material, revealing distinct b values for different dose ranges. The effect of HR on the glow curve was also studied, showing an anomalous increase in TL intensity with rising HRs, contrary to expectations from the standard theoretical model. Additionally, the RU of the material was assessed by performing 10 consecutive TL measurements after a 50 Gy irradiation, demonstrating minimal degradation in TL intensity, with low deviations from the mean and first values. This remarkable RU is crucial for ensuring the material's effectiveness in long-term dosimetric applications.

References

  • Aitken MJ. 1985. Thermoluminescence Dating. Academic Press, London, UK, pp: 26.
  • Akça S. 2020. Determination of thermoluminescence properties of ZnB₂O₄:Tm³⁺, Li⁺ for dosimetric purposes. Appl Radiat Isot, 157: 109041.
  • Bailiff IK, Stepanenko VF, Gosku HY, Bøtter-Jensen L, Brodski L, Chumak V, Correcher V, Delgado A, Golikov V, Jungner H, Khamidova LG, Kolizshenkov TV, Likhtarev I, Meckbach R, Petrov SA, Sholom S. 2004. Comparison of retrospective luminescence dosimetry with computational modeling in two highly contaminated settlements downwind of the Chernobyl NPP. Health Phys, 86: 25–41.
  • Bulcar K, Oglakci M, Altowyan AS, Bilgin R, Yucel A, Sezer S, Hakami J, Depci T, Topaksu M, Can N. 2024. Exploring beta irradiation responses in Sr₂⁺-doped hydroxyapatite: A thermoluminescence study. Ceram Int, 50(17B): 31300–31312.
  • Chang LLY, Howie RA, Zussman J. 1998. Rock Forming Minerals, Non-silicates—Sulphates, Carbonates, Phosphates, Halides, Vol. 5. Geological Society of London, London, UK, 2nd ed, pp:25.
  • Chen R, Kirsh Y. 1981. The Analysis of Thermally Stimulated Processes. Pergamon Press, Oxford, UK, pp: 53.
  • Chen R, McKeever SWS. 1997. Theory of Thermoluminescence and Related Phenomena. World Scientific, Singapore, pp: 42.
  • Ducruet JM, Vass I. 2009. Thermoluminescence: experimental. Photosynth Res, 101: 195–204.
  • El-Faramawy N, Alazab HA, Gad A, Sabry M. 2022. Study of the thermoluminescence kinetic parameters of a β-irradiated natural calcite. Radiat Phys Chem, 190: 109793.
  • Kim KB, Hong DG. 2014. Kinetic parameters, bleaching and radiation response of thermoluminescence glow peaks separated by deconvolution on Korean calcite. Radiat Phys Chem, 103: 16–21.
  • Kirsh Y. 1992. Kinetic analysis of thermoluminescence. Phys Status Solidi A, 129(1): 15–48.
  • Kitis G, Spiropulu M, Papadopoulos J, Charalambous S. 1993. Heating rate effects on the TL glow-peaks of three thermoluminescent phosphors. Nucl Instrum Meth Phys Res A, 73: 367–372.
  • Mandowski A, Bos AJJ. 2011. Explanation of anomalous heating rate dependence of thermoluminescence in YPO₄:Ce³⁺, Sm³⁺ based on the semi-localized transition (SLT) model. Radiat Meas, 46: 1376–1379.
  • Mandowski A. 2005. Semi-localized transitions model for thermoluminescence. J Phys D Appl Phys, 38: 17–21.
  • McKeever SWS, Moscovitch M, Townsend PD. 1995. Thermoluminescence Dosimetry Materials: Properties and Uses. Nuclear Technology Publishing, Ashford, UK, pp: 63.
  • McKeever SWS. 1985. Thermoluminescence of Solids. Cambridge University Press, Cambridge, UK, pp: 41.
  • Oglakci M, Akça-Özalp S, Portakal-Uçar ZG, Correcher V, Benavente JF, Sonsuz M, Can N, Halefoglu YZ, Topaksu M. 2025. Thermoluminescence study of Nd³⁺ doped lanthanum tri-borate phosphor. J Alloys Compd, 1013: 178570.
  • Oglakci M, Portakal-Uçar ZG, Akça-Özalp S, Correcher V, Benavente JF, Sonsuz M, Can N, Halefoglu YZ, Topaksu M. 2023. Thermoluminescence behavior of Ce³⁺-doped lanthanum tri-borate phosphor for dosimetry applications. Ceram Int, 49(22B): 36092–36102.
  • Orhan A, Orhan A. 2018. Investigation of mineralogical, geochemical and origin of skarn mineralization related plutonic rocks from the Kaman region (Kırşehir, Central Anatolia). NEUBAP Project Report No: 15/2F7, pp: 85.
  • Orhan A. 2020. Mineralogy, fluid inclusions and carbon isotopes of the Kaman iron deposits, Central Anatolia, Turkey: Implication for ore genesis and hydrothermal evolution. Ore Geol Rev, 127: 103808.
  • Pagonis V, Blohm L, Brengle M, Mayonado G, Woglam P. 2013. Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model. Radiat Meas, 51–52: 40–47.
  • Ponnusamy V, Ramasamy V, Jose MT, Anandalakshmi K. 2012. Effect of annealing on natural calcitic crystals—A thermostimulated luminescence (TSL) study. J Lumin, 132(4): 1063–1075.
  • Portakal Uçar ZG. 2021. Thermoluminescence characteristics and kinetic analysis of beta irradiated Ca₄LaO(BO₃)₃ phosphor. Cumhuriyet Sci J, 42(3): 702–714.
  • Soliman C, Metwally SM. 2006. Thermoluminescence of the green emission band of calcite. Radiat Eff Defects Solids, 161(10): 607–613.
  • Toktamiş H, Toktamiş D, Yazıcı AN. 2014. Thermoluminescence studies of calcite extracted from natural sand used in making roasted chickpea. J Lumin, 153: 375–381.
  • Townsend PD, Kirsh Y. 1989. Spectral measurement during thermoluminescence—An essential requirement. Contemp Phys, 30: 337–354.
  • Urbina M, Millán A, Beneitez P, Calderón T. 1998. Dose rate effect in calcite. J Lumin, 79(1): 21–28.
  • Wintle AG. 1978. A thermoluminescence dating study of some Quaternary calcite: potential and problems. Can J Earth Sci, 15(12): 1884–1893.
There are 28 citations in total.

Details

Primary Language English
Subjects Nonlinear Optics and Spectroscopy
Journal Section Research Articles
Authors

Sümeyra Balcı 0000-0003-3463-6923

Early Pub Date July 9, 2025
Publication Date July 15, 2025
Submission Date March 21, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Balcı, S. (2025). Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir. Black Sea Journal of Engineering and Science, 8(4), 1127-1133.
AMA Balcı S. Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir. BSJ Eng. Sci. July 2025;8(4):1127-1133.
Chicago Balcı, Sümeyra. “Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir”. Black Sea Journal of Engineering and Science 8, no. 4 (July 2025): 1127-33.
EndNote Balcı S (July 1, 2025) Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir. Black Sea Journal of Engineering and Science 8 4 1127–1133.
IEEE S. Balcı, “Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir”, BSJ Eng. Sci., vol. 8, no. 4, pp. 1127–1133, 2025.
ISNAD Balcı, Sümeyra. “Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir”. Black Sea Journal of Engineering and Science 8/4 (July 2025), 1127-1133.
JAMA Balcı S. Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir. BSJ Eng. Sci. 2025;8:1127–1133.
MLA Balcı, Sümeyra. “Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir”. Black Sea Journal of Engineering and Science, vol. 8, no. 4, 2025, pp. 1127-33.
Vancouver Balcı S. Investigation of Thermoluminescence Properties of Calcite from Kaman, Kırşehir. BSJ Eng. Sci. 2025;8(4):1127-33.

                                                24890