Research Article
BibTex RIS Cite

Exergy-Based Investigation of Hydrogen Production via Aluminum Chloride (AlCl₃)-Based Chlor-Alkali Electrolysis

Year 2025, Volume: 8 Issue: 5, 1628 - 1633, 15.09.2025
https://doi.org/10.34248/bsengineering.1760309

Abstract

In this study, an electrolysis system based on aluminum chloride (AlCl₃) was designed as a potential alternative to the conventionally used sodium chloride solutions in chlor-alkali processes. The exergy performance of the system was experimentally investigated under varying temperature and cell voltage conditions. The experimental setup was tested at a constant electrolyte flow rate of 0.3 g/s, with temperature levels of 20 °C and 45 °C, and cell voltages of 5.0 V, 7.5 V, and 10.0 V. In the laboratory-scale cell used in the study, the anode and cathode compartments were separated by a Nafion 212 membrane, which allows the selective passage of Al³⁺ ions. Five graphite electrodes were employed in each compartment. Since the effect of electrolyte flow rate on hydrogen and chlorine gas production was found to be negligible, it was kept constant throughout the experiments. During operation, the generation of reactive chlorine at the anode side led to chemical degradation of the electrode surfaces, resulting in lower chlorine output compared to hydrogen production. According to the experimental findings, the lowest hydrogen generation rate was measured as 0,94 mL/min under 20 °C and 5.0 V conditions, while the highest rate reached 3,577 mL/min at 45 °C and 10.0 V. Regarding exergy efficiency, the lowest value was calculated as 1,544 % at low temperature and voltage, and the highest efficiency was recorded as 4,98 % under the highest tested conditions. This study highlights that the AlCl₃-based system was experimentally evaluated for the first time in terms of thermodynamic (exergy) efficiency, offering a novel and alternative approach within chlor-alkali technologies. Moreover, in addition to hydrogen gas, the system facilitates the formation of aluminum hydroxide (Al(OH)₃), a value-added by-product, thereby enhancing both the environmental sustainability and economic feasibility of the process.

References

  • Bičáková O, Straka P. 2012. Production of hydrogen from renewable resources and its effectiveness. Int J Hydrogen Energy, 37: 16. https://doi.org/10.1016/j.ijhydene.2011.11.120
  • BoroumandJazi G, Rismanchi B, Saidur R. 2013. A review on exergy analysis of industrial sector. Renew Sustain Energy Rev, 27: 198–203. https://doi.org/10.1016/j.rser.2013.06.018
  • Brinkmann T, Santonja GG, Schorcht F, Roudier S, Sancho LD. 2014. Best available techniques (BAT) reference document for the production of chlor-alkali. European Commission, Joint Research Centre, Institute for Prospective Technological Studies.
  • Cengel YA, Boles MA. 2013. Termodinamik. 7. baskı. Palme Yayıncılık. Ankara, Türkiye, pp: 35-39.
  • Damarseckin S. 2024. Hydrogen production from ZnCl₂ salt: Application of chlor-alkali method. Int J Hydrogen Energy, 88: 888–897. https://doi.org/10.1016/j.ijhydene.2023.12.233
  • Dincer I, Rosen MA. 2012. Energy, environment, and sustainable development. Elsevier, Oxford, USA, pp: 56-96.
  • Erden M, Karakilcik M. 2024. Experimental investigation of hydrogen production performance of various salts with a chlor-alkali method. Int J Hydrogen Energy, 52: 546–560. https://doi.org/10.1016/j.ijhydene.2023.11.002
  • Hammer Th, Kappes Th, Baldauf M. 2004. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catal Today, 89: 1–2. https://doi.org/10.1016/j.cattod.2004.03.059
  • Konieczny A, Mondal K, Wiltowski T, Dydo P. 2008. Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int J Hydrogen Energy, 33: 1. https://doi.org/10.1016/j.ijhydene.2007.07.010
  • Rabbani M, Dincer I, Naterer GF. 2014. Experimental investigation of processing parameters and effects on chlor-alkali products in an electrolysis-based chlor-alkali reactor. Chem Eng Process, 82: 9–18. https://doi.org/10.1016/j.cep.2014.06.004
  • Roy H, Barua S, Ahmed T, Mehnaz F, Islam MdS, Mujtaba IM. 2022. A sustainable integration approach of chlor-alkali industries for the production of PVC and clean fuel hydrogen: prospects and Bangladesh perspectives. Processes, 10: 1638. https://doi.org/10.3390/pr10081638
  • Sabeeh G, Palanki S, Sylvester ND, El-Sharkh MY. 2019. Modeling and analysis of a hydrogen reformer for fuel cell applications. Heat Transf Eng, 40(13–14): 1153–1161. https://doi.org/10.1080/01457632.2018.1457262
  • Shadidi B, Najafi G, Yusaf T. 2021. A review of hydrogen as a fuel in internal combustion engines. Energies, 14(19): 6209. https://doi.org/10.3390/en14196209
  • Sigurvinsson J, Mansilla C, Arnason B, Bontemps A, Mareşal A, Sigfusson TI, Werkoff F. 2006. Heat transfer problems for the production of hydrogen from geothermal energy. Energy Convers Manag, 47: 20. https://doi.org/10.1016/j.enconman.2005.05.030
  • Singla MK, Nijhawan P, Oberoi AS. 2021. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ Sci Pollut Res Int, 28(13): 15607–15626. https://doi.org/10.1007/s11356-020-12231-8
  • Zhang X, O'Brien JE, Tao G, Zhou C, Housley GK. 2015. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment. J Power Sources, 297: 90–97. https://doi.org/10.1016/j.jpowsour.2015.07.085

Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi

Year 2025, Volume: 8 Issue: 5, 1628 - 1633, 15.09.2025
https://doi.org/10.34248/bsengineering.1760309

Abstract

Bu çalışmada, klor-alkali proseslerinde geleneksel olarak tercih edilen sodyum klorür çözeltilerine alternatif oluşturabilecek nitelikte, alüminyum klorür (AlCl₃) esaslı bir elektroliz sistemi tasarlanmış ve sistemin farklı sıcaklık ve voltaj düzeylerinde sergilediği ekserji performansı deneysel olarak değerlendirilmiştir. Deneysel düzenek, sabit elektrolit debisi (0,3 g/s) koşulunda, 20 °C ve 45 °C sıcaklıklar ile 5,0 V, 7,5 V ve 10,0 V hücre gerilimleri altında test edilmiştir. Çalışmada kullanılan laboratuvar tipi hücrede anot ve katot bölmeleri, Al³⁺ iyonlarının seçici geçişine imkân tanıyan Nafion 212 membranıyla birbirinden ayrılmıştır. Her iki bölmede beşer adet grafit elektrot kullanılmıştır. Elektrolit akış hızının hidrojen ve klor üretimi üzerindeki etkisi deneysel olarak önemsiz bulunmuş ve bu nedenle sabit tutulmuştur. Deney süresince anot bölgesinde meydana gelen klor gazı üretimi, elektrot yüzeylerinde kimyasal aşınmaya neden olmuş; bu durum, klor gazı veriminin hidrojen gazına kıyasla daha düşük olmasına neden olmuştur. Elde edilen deneysel bulgulara göre, hidrojen üretim hızı 20 °C sıcaklık ve 5,0 V gerilim altında en düşük seviyede olup 0,94 mL/dk olarak kaydedilmiş, buna karşılık 45 °C ve 10,0 V koşullarında 3,577 mL/dk ile en yüksek üretim hızına ulaşılmıştır. Ekserji verimliliği, düşük sıcaklık ve gerilim koşullarında % 1,544 seviyesinde kalırken, en yüksek verim % 4,98 ile yüksek sıcaklık ve voltaj kombinasyonunda gözlemlenmiştir. Bu kapsamda, AlCl₃ çözeltisiyle çalışan elektroliz sisteminin literatürde ilk kez termodinamik verimlilik (ekserji) açısından deneysel olarak incelendiği vurgulanmakta olup, bu tür sistemlerin klor-alkali teknolojileri içerisinde alternatif ve yenilikçi bir yaklaşım sunduğu değerlendirilmiştir. Ayrıca, reaksiyon sonucunda hidrojenin yanı sıra, ekonomik değeri yüksek olan Al(OH)₃ bileşiğinin oluşması, sürecin çevresel sürdürülebilirliğini ve ekonomik cazibesini artıran önemli bir unsur olarak öne çıkmaktadır.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

References

  • Bičáková O, Straka P. 2012. Production of hydrogen from renewable resources and its effectiveness. Int J Hydrogen Energy, 37: 16. https://doi.org/10.1016/j.ijhydene.2011.11.120
  • BoroumandJazi G, Rismanchi B, Saidur R. 2013. A review on exergy analysis of industrial sector. Renew Sustain Energy Rev, 27: 198–203. https://doi.org/10.1016/j.rser.2013.06.018
  • Brinkmann T, Santonja GG, Schorcht F, Roudier S, Sancho LD. 2014. Best available techniques (BAT) reference document for the production of chlor-alkali. European Commission, Joint Research Centre, Institute for Prospective Technological Studies.
  • Cengel YA, Boles MA. 2013. Termodinamik. 7. baskı. Palme Yayıncılık. Ankara, Türkiye, pp: 35-39.
  • Damarseckin S. 2024. Hydrogen production from ZnCl₂ salt: Application of chlor-alkali method. Int J Hydrogen Energy, 88: 888–897. https://doi.org/10.1016/j.ijhydene.2023.12.233
  • Dincer I, Rosen MA. 2012. Energy, environment, and sustainable development. Elsevier, Oxford, USA, pp: 56-96.
  • Erden M, Karakilcik M. 2024. Experimental investigation of hydrogen production performance of various salts with a chlor-alkali method. Int J Hydrogen Energy, 52: 546–560. https://doi.org/10.1016/j.ijhydene.2023.11.002
  • Hammer Th, Kappes Th, Baldauf M. 2004. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catal Today, 89: 1–2. https://doi.org/10.1016/j.cattod.2004.03.059
  • Konieczny A, Mondal K, Wiltowski T, Dydo P. 2008. Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int J Hydrogen Energy, 33: 1. https://doi.org/10.1016/j.ijhydene.2007.07.010
  • Rabbani M, Dincer I, Naterer GF. 2014. Experimental investigation of processing parameters and effects on chlor-alkali products in an electrolysis-based chlor-alkali reactor. Chem Eng Process, 82: 9–18. https://doi.org/10.1016/j.cep.2014.06.004
  • Roy H, Barua S, Ahmed T, Mehnaz F, Islam MdS, Mujtaba IM. 2022. A sustainable integration approach of chlor-alkali industries for the production of PVC and clean fuel hydrogen: prospects and Bangladesh perspectives. Processes, 10: 1638. https://doi.org/10.3390/pr10081638
  • Sabeeh G, Palanki S, Sylvester ND, El-Sharkh MY. 2019. Modeling and analysis of a hydrogen reformer for fuel cell applications. Heat Transf Eng, 40(13–14): 1153–1161. https://doi.org/10.1080/01457632.2018.1457262
  • Shadidi B, Najafi G, Yusaf T. 2021. A review of hydrogen as a fuel in internal combustion engines. Energies, 14(19): 6209. https://doi.org/10.3390/en14196209
  • Sigurvinsson J, Mansilla C, Arnason B, Bontemps A, Mareşal A, Sigfusson TI, Werkoff F. 2006. Heat transfer problems for the production of hydrogen from geothermal energy. Energy Convers Manag, 47: 20. https://doi.org/10.1016/j.enconman.2005.05.030
  • Singla MK, Nijhawan P, Oberoi AS. 2021. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ Sci Pollut Res Int, 28(13): 15607–15626. https://doi.org/10.1007/s11356-020-12231-8
  • Zhang X, O'Brien JE, Tao G, Zhou C, Housley GK. 2015. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment. J Power Sources, 297: 90–97. https://doi.org/10.1016/j.jpowsour.2015.07.085
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Renewable Energy Resources
Journal Section Research Articles
Authors

Serdal Damarseçkin 0000-0003-4427-6220

Early Pub Date September 13, 2025
Publication Date September 15, 2025
Submission Date August 7, 2025
Acceptance Date September 9, 2025
Published in Issue Year 2025 Volume: 8 Issue: 5

Cite

APA Damarseçkin, S. (2025). Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi. Black Sea Journal of Engineering and Science, 8(5), 1628-1633. https://doi.org/10.34248/bsengineering.1760309
AMA Damarseçkin S. Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi. BSJ Eng. Sci. September 2025;8(5):1628-1633. doi:10.34248/bsengineering.1760309
Chicago Damarseçkin, Serdal. “Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi Ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi”. Black Sea Journal of Engineering and Science 8, no. 5 (September 2025): 1628-33. https://doi.org/10.34248/bsengineering.1760309.
EndNote Damarseçkin S (September 1, 2025) Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi. Black Sea Journal of Engineering and Science 8 5 1628–1633.
IEEE S. Damarseçkin, “Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi”, BSJ Eng. Sci., vol. 8, no. 5, pp. 1628–1633, 2025, doi: 10.34248/bsengineering.1760309.
ISNAD Damarseçkin, Serdal. “Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi Ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi”. Black Sea Journal of Engineering and Science 8/5 (September2025), 1628-1633. https://doi.org/10.34248/bsengineering.1760309.
JAMA Damarseçkin S. Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi. BSJ Eng. Sci. 2025;8:1628–1633.
MLA Damarseçkin, Serdal. “Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi Ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi”. Black Sea Journal of Engineering and Science, vol. 8, no. 5, 2025, pp. 1628-33, doi:10.34248/bsengineering.1760309.
Vancouver Damarseçkin S. Alüminyum Klorür (ALCL₃) Bazlı Klor-Alkali Elektrolizi ile Hidrojen Üretiminin Ekserji Temelli İncelenmesi. BSJ Eng. Sci. 2025;8(5):1628-33.

                            24890