Research Article
BibTex RIS Cite

Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi

Year 2023, , 579 - 583, 15.10.2023
https://doi.org/10.19127/bshealthscience.1325058

Abstract

Son yıllarda gelişen antimikrobiyal direnç endişesiyle alternatif stratejiler geliştirmek amacıyla bitkisel yağların antimikrobiyal aktiviteleri araştırılmaktadır. Bu çalışmanın amacı; ticari olarak temin edilebilen beş farklı bitkisel yağın altı farklı standart bakteri suşu ile bir standart maya mantarı suşu üzerindeki minimum inhibitör konsantrasyonlarının (MİK) belirlenmesidir. Gram pozitif bakterilerden; Staphylococcus aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212); Gram negatif bakterilerden Escherichia coli (ATCC 225923), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 27853) ve Acinetobacter baumannii (ATCC 49139) ile maya mantarlarından Candida parapsilosis (ATCC 22019) üzerindeki antimikrobiyal aktiviteleri belirlemek için, ticari olarak temin edilen piren otu (Tanacetum santolinoides) yağı, tüylü adaçayı (Salvia lanigera) yağı, aynısafa (Calendula officinalis) yağı, zerdeçal (Curcuma longa) yağı ve argan (Argania spinosa) yağı olmak üzere beş bitkisel yağ kullanılmıştır. Bitkisel yağların etkili MİK değerleri resazurin mikrotitre testi (REMA) tekniği kullanılarak tespit edildi. Tüm bitkisel yağlar, farklı konsantrasyonlarda standart bakteri suşları ve standart maya mantarı suşu üzerinde etkili olmuştur. Bitkisel yağların her bir suş üzerindeki etkili konsantrasyon aralığı şu şekildedir; C. parapsilosis (ATCC 22019), K. pneumoniae (ATCC 1388), E. faecalis (ATCC 29212) ve E. coli (ATCC 25923) için 62,5-250 µg/ml, A. baumannii (ATCC 49139) ve P. aeruginosa (ATCC 27853) için 125-250 µg/ml, S. aureus (ATCC 29213) için 62,5-125 µg/ml olarak saptanmıştır. Yapılan bu çalışmada standart bakteri suşlarına ve standart maya mantarı suşuna karşı etkileri incelenen bitkisel yağların antimikrobiyal etkinliğinin farklı düzeylerde olduğu gözlenmiştir. Sonuç olarak araştırılan bu bitkisel yağların, sergiledikleri yüksek antimikrobiyal etkileriyle yeni antimikrobiyal ilaç ve antimikrobiyal madde çalışmalarına katkı sağlayabileceği düşünülmektedir.

References

  • Ahmad M, Khan MPZ, Mukhtar A, Zafar M, Sultana S, Jahan S. 2016. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan. J Ethnopharmacol, 184: 154-180.
  • Al-Howiriny TA. 2003. Composition and antimicrobial activity of essential oil of Salvia lanigera. Pakistan J Biol Sci, 6(2): 133-135.
  • Bruno M, Modica A, Catinella G. 2019. Chemical composition of the essential oils of Centaurea tomentella Hand-Mazz. and C. haussknechtii Boiss. (Asteraceae) collected wild in Turkey and their activity on microorganisms affecting historical art craft. Nat Prod Res, 33(8): 1092-1100. DOI: 10.1080/14786419.2018.1463531.
  • Carev I, Gelemanović A, Glumac M. 2023. Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Sci Rep, 13(1): 7475. DOI: 10.1038/s41598-023-34058-2.
  • El Monfalouti H, Guillaume D, Denhez C, Charrouf Z. 2010. Therapeutic potential of argan oil: A review. J Pharm Pharmacol, 62: 1669-1675.
  • Elshama SS. 2018. The preventive role of arabic gum in the treatment of toxicity. Toxicol Res, 1(1): 27-29.
  • El-Shazly A, Dorai G, Wink M. 2002. Composition and antimicrobial activity of essential oil and hexane-ether extract of Tanacetum santolinoides (dc.) Feinbr. and Fertig. Naturforsch CJ Biosci. 57(7-8): 620-623. DOI: 10.1515/znc-2002-7-812.
  • Gazim CZ, Rezende MC, Fraga RS. 2008. Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing In Brazil. Brazilian J Microbiol, 39: 61-63.
  • Hussain AI, Anwar F, Sherazi STH, Przybylski R. 2008. Chemical composition: Antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem, 108: 986-995.
  • Ibáñez MD, Blázquez MA. 2021. Curcuma longa L. rhizome essential oil from extraction to ıts agri-food applications: A review. Plants, 10(1): 44.
  • Kamatou GPP, Makunga NP, Ramogola WPN, Viljoen AM. 2008. South African Salvia species: A review of biological activities and phytochemistry. J Ethnopharmacol, 119: 667-672.
  • Kerkoub N, Panda SK, Yang MR, Lu J.G, Jiang ZH, Nasri H, Luyten W. 2018.Bioassay-Guided Isolation of Anti-Candida Biofilm Compounds From Methanol Extracts of the Aerial Parts of Salvia officinalis (Annaba,Algeria) Frontiers in pharmacology. 9:1-1
  • Kilic O. 2016. Chemical composition of this salvia species from Turkey, a chemotaxonomic approach. J Essent Oil Bear Plants, 19: 229-235.
  • Marfil R, Giménez R, Martínez O, Bouzas PR, Rufián-Henares JA, Mesías M, Cabrera-Vique C. 2011. Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil Argania spinosa, Skeels. Eur J Lipid Sci Tech, 113: 886-893.
  • Nateche F, Martin A, Baraka S, Palomino J C, Khaled S, Portaels F. 2006. Application of the resazurin microtitre assay for detection of multidrug resistance in Mycobacterium tuberculosis in Algiers. J Medic Microbiol, 55: 857-860
  • Nostro A, Germano MP, D’angelo V, Marino A, Cannatelli MA, 2000. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol, 30(5): 79-84.
  • Ouhayoun JP. 2003. Penetrating the plaque biofilm: impact of essential oil mouthwash. J Clin Periodontol, 5: 10-12.
  • Parveen Z, Nawaz S, Siddique S, Shahzad K. 2013. Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian J Pharm Sci, 75(1): 117-122.
  • Pelizzaro-Rocha KJ, Tiuman TS, Izumi E, Ueda-Nakamura T, Filho BPD, Nakamura CV. 2010. Synergistic effects of parthenolide and benznidazole on Trypanosoma cruzi. Phytomedic, 18(1): 36-39.
  • Petrie KA, Peck MR. 2000. Alternative medicine in maternity care. Prim Care, 27: 117-136.
  • Pinto E, Salgueiro LR, Cavaleiro C, Palmeira A, Gonzalves MJ. 2007. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind Crop Prod, 26(2): 135-141.
  • Porter NG, Wilkins AL. 1999. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry, 50: 407-415.
  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S. 2006. In vitro antibacterial activity of some plant Essential oils. Biomed Cent, 6: 39-45.
  • Rosselli S, Bruno M, Raimondo FM. 2012. Cytotoxic effect of eudesmanolides isolated from flowers of Tanacetum vulgare ssp. Siculum. Molecules, 17: 8186-8195.
  • Sartoratto A, Machado ALM, Delarmelina C, Figueria GM, Duarte MCT, Rehder VLG. 2004. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian J Microbiol, 35(4): 275-280.
  • Sekar S, Kandavel D. 2010. Interaction of plant growth promoting rhizobacteria (pgpr) and endophytes with medicinal plants-new avenues for phytochemicals. J Phytology, 2: 91-100.
  • Senol FS, Orhan I, Celep F, Kahraman A, Dogan M, Yılmaz G, ¸Sener B. 2010. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem, 120: 34-43.
  • Sharma S, Barkauskaite S, Duffy B, Jaiswal AK, Jaiswal S. 2020. Characterization and antimicrobial activity of biodegradable active packaging enriched with clove and thyme essential oil for food packaging application. Foods, 9: 1117.
  • Sokovic M, Van Griensven LJLD. 2006. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur J Plant Pathol, 116: 211-224.
  • Soltanbeigi A, Yıldız M, Dıraman H, Terzi H, Sakartepe E, Yıldız E. 2021. Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sthisces in the greenhouse. Saudi J Biol Sci, 28: 7327-7335.
  • Stoleru E, Vasile C, Irimia A, Brebu M. 2021. Towards a bioactive food packaging: Poly (lactic acid) Surface functionalized by chitosan coating embedding clove and argan oils. Molecules, 26: 4500.
  • Taïbi K, Aït Abderrahim L, Boussaid M, Taibi F, Achir M, Souana K, Benaissa T, Farhi KH, Naamani FZ, Nait Said K. 2021. Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur J Integr Medic, 44: 101339.
  • Thongson C, Davidson PM, Mahakarnchanakul W, Vibulsresth P. 2005. Antimicrobial effect of Thai spices against Listeria monocytogenes and Salmonella typhimurium DT104. J Food Prot, 68: 2054-2058.
  • WHO. 2012. Antimicrobial resistance WHO media centre (updated March cited 2012 May 5). URL: http://www.who.int/mediacentre/factsheets/fs194/en (erişim tarihi: 05 Mayıs 2023).

Determination of in vitro Antibacterial and Antifungal Properties of Pyrenean, Hairy Sage, Calendula, Turmeric and Argan Oils

Year 2023, , 579 - 583, 15.10.2023
https://doi.org/10.19127/bshealthscience.1325058

Abstract

Antimicrobial activities of herbal oils have been investigated as alternative strategies since antimicrobial resistance concern has been developed in recent years. The aim of this study is to determine the minimum inhibitory concentrations (MIC) of five commercially available herbal oils on six different standard bacterial strains and one standard yeast strain. Five commercially available herbal (Pyrenean, Hairy Sage, Calendula, Turmeric and Argan) oils were used to determine antimicrobial activities on the Staphylococcus aureus (ATCC 29213) and Enterococcus faecalis (ATCC 29212) Gram-positive bacteria; Escherichia coli (ATCC 225923), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 27853) and Acinetobacter baumannii (ATCC 49139) Gram-negative bacteria and Candida parapsilosis (ATCC 22019) the yeast fungi. The effective MIC values of herbal oils were identified using the resazurin microtiter assay (REMA) technique. All herbal oils were effective on standard bacterial strains and standard yeast strain at different concentrations. The effective concentration range of herbal oils on each strain is as follows; 62.5-250 µg/ml for C. parapsilosis (ATCC 22019), K. pneumoniae (ATCC 1388), E. faecalis (ATCC 29212) and E. coli (ATCC 25923), 125-250 µg/ml for A.baumannii (ATCC 49139), P. aeruginosa (ATCC 27853) and 62.5-125 µg/ml for S. aureus (ATCC 29213). It was observed that the antimicrobial activity of herbal oils whose effects were examined against standard bacterial strains and standard yeast strains was at different levels in this study. It is concluded that these investigated herbal oils may contribute to the new antimicrobial drugs and antimicrobial substances studies with their high antimicrobial effects.

References

  • Ahmad M, Khan MPZ, Mukhtar A, Zafar M, Sultana S, Jahan S. 2016. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan. J Ethnopharmacol, 184: 154-180.
  • Al-Howiriny TA. 2003. Composition and antimicrobial activity of essential oil of Salvia lanigera. Pakistan J Biol Sci, 6(2): 133-135.
  • Bruno M, Modica A, Catinella G. 2019. Chemical composition of the essential oils of Centaurea tomentella Hand-Mazz. and C. haussknechtii Boiss. (Asteraceae) collected wild in Turkey and their activity on microorganisms affecting historical art craft. Nat Prod Res, 33(8): 1092-1100. DOI: 10.1080/14786419.2018.1463531.
  • Carev I, Gelemanović A, Glumac M. 2023. Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Sci Rep, 13(1): 7475. DOI: 10.1038/s41598-023-34058-2.
  • El Monfalouti H, Guillaume D, Denhez C, Charrouf Z. 2010. Therapeutic potential of argan oil: A review. J Pharm Pharmacol, 62: 1669-1675.
  • Elshama SS. 2018. The preventive role of arabic gum in the treatment of toxicity. Toxicol Res, 1(1): 27-29.
  • El-Shazly A, Dorai G, Wink M. 2002. Composition and antimicrobial activity of essential oil and hexane-ether extract of Tanacetum santolinoides (dc.) Feinbr. and Fertig. Naturforsch CJ Biosci. 57(7-8): 620-623. DOI: 10.1515/znc-2002-7-812.
  • Gazim CZ, Rezende MC, Fraga RS. 2008. Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing In Brazil. Brazilian J Microbiol, 39: 61-63.
  • Hussain AI, Anwar F, Sherazi STH, Przybylski R. 2008. Chemical composition: Antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem, 108: 986-995.
  • Ibáñez MD, Blázquez MA. 2021. Curcuma longa L. rhizome essential oil from extraction to ıts agri-food applications: A review. Plants, 10(1): 44.
  • Kamatou GPP, Makunga NP, Ramogola WPN, Viljoen AM. 2008. South African Salvia species: A review of biological activities and phytochemistry. J Ethnopharmacol, 119: 667-672.
  • Kerkoub N, Panda SK, Yang MR, Lu J.G, Jiang ZH, Nasri H, Luyten W. 2018.Bioassay-Guided Isolation of Anti-Candida Biofilm Compounds From Methanol Extracts of the Aerial Parts of Salvia officinalis (Annaba,Algeria) Frontiers in pharmacology. 9:1-1
  • Kilic O. 2016. Chemical composition of this salvia species from Turkey, a chemotaxonomic approach. J Essent Oil Bear Plants, 19: 229-235.
  • Marfil R, Giménez R, Martínez O, Bouzas PR, Rufián-Henares JA, Mesías M, Cabrera-Vique C. 2011. Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil Argania spinosa, Skeels. Eur J Lipid Sci Tech, 113: 886-893.
  • Nateche F, Martin A, Baraka S, Palomino J C, Khaled S, Portaels F. 2006. Application of the resazurin microtitre assay for detection of multidrug resistance in Mycobacterium tuberculosis in Algiers. J Medic Microbiol, 55: 857-860
  • Nostro A, Germano MP, D’angelo V, Marino A, Cannatelli MA, 2000. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol, 30(5): 79-84.
  • Ouhayoun JP. 2003. Penetrating the plaque biofilm: impact of essential oil mouthwash. J Clin Periodontol, 5: 10-12.
  • Parveen Z, Nawaz S, Siddique S, Shahzad K. 2013. Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian J Pharm Sci, 75(1): 117-122.
  • Pelizzaro-Rocha KJ, Tiuman TS, Izumi E, Ueda-Nakamura T, Filho BPD, Nakamura CV. 2010. Synergistic effects of parthenolide and benznidazole on Trypanosoma cruzi. Phytomedic, 18(1): 36-39.
  • Petrie KA, Peck MR. 2000. Alternative medicine in maternity care. Prim Care, 27: 117-136.
  • Pinto E, Salgueiro LR, Cavaleiro C, Palmeira A, Gonzalves MJ. 2007. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind Crop Prod, 26(2): 135-141.
  • Porter NG, Wilkins AL. 1999. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry, 50: 407-415.
  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S. 2006. In vitro antibacterial activity of some plant Essential oils. Biomed Cent, 6: 39-45.
  • Rosselli S, Bruno M, Raimondo FM. 2012. Cytotoxic effect of eudesmanolides isolated from flowers of Tanacetum vulgare ssp. Siculum. Molecules, 17: 8186-8195.
  • Sartoratto A, Machado ALM, Delarmelina C, Figueria GM, Duarte MCT, Rehder VLG. 2004. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian J Microbiol, 35(4): 275-280.
  • Sekar S, Kandavel D. 2010. Interaction of plant growth promoting rhizobacteria (pgpr) and endophytes with medicinal plants-new avenues for phytochemicals. J Phytology, 2: 91-100.
  • Senol FS, Orhan I, Celep F, Kahraman A, Dogan M, Yılmaz G, ¸Sener B. 2010. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem, 120: 34-43.
  • Sharma S, Barkauskaite S, Duffy B, Jaiswal AK, Jaiswal S. 2020. Characterization and antimicrobial activity of biodegradable active packaging enriched with clove and thyme essential oil for food packaging application. Foods, 9: 1117.
  • Sokovic M, Van Griensven LJLD. 2006. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur J Plant Pathol, 116: 211-224.
  • Soltanbeigi A, Yıldız M, Dıraman H, Terzi H, Sakartepe E, Yıldız E. 2021. Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sthisces in the greenhouse. Saudi J Biol Sci, 28: 7327-7335.
  • Stoleru E, Vasile C, Irimia A, Brebu M. 2021. Towards a bioactive food packaging: Poly (lactic acid) Surface functionalized by chitosan coating embedding clove and argan oils. Molecules, 26: 4500.
  • Taïbi K, Aït Abderrahim L, Boussaid M, Taibi F, Achir M, Souana K, Benaissa T, Farhi KH, Naamani FZ, Nait Said K. 2021. Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur J Integr Medic, 44: 101339.
  • Thongson C, Davidson PM, Mahakarnchanakul W, Vibulsresth P. 2005. Antimicrobial effect of Thai spices against Listeria monocytogenes and Salmonella typhimurium DT104. J Food Prot, 68: 2054-2058.
  • WHO. 2012. Antimicrobial resistance WHO media centre (updated March cited 2012 May 5). URL: http://www.who.int/mediacentre/factsheets/fs194/en (erişim tarihi: 05 Mayıs 2023).
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences (Other)
Journal Section Research Article
Authors

Burcu Gürer Giray 0000-0003-3165-8924

Early Pub Date September 8, 2023
Publication Date October 15, 2023
Submission Date July 10, 2023
Acceptance Date August 1, 2023
Published in Issue Year 2023

Cite

APA Gürer Giray, B. (2023). Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi. Black Sea Journal of Health Science, 6(4), 579-583. https://doi.org/10.19127/bshealthscience.1325058
AMA Gürer Giray B. Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi. BSJ Health Sci. October 2023;6(4):579-583. doi:10.19127/bshealthscience.1325058
Chicago Gürer Giray, Burcu. “Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı Ve Argan Yağının in Vitro Antibakteriyal Ve Antifungal Özelliklerinin Belirlenmesi”. Black Sea Journal of Health Science 6, no. 4 (October 2023): 579-83. https://doi.org/10.19127/bshealthscience.1325058.
EndNote Gürer Giray B (October 1, 2023) Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi. Black Sea Journal of Health Science 6 4 579–583.
IEEE B. Gürer Giray, “Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi”, BSJ Health Sci., vol. 6, no. 4, pp. 579–583, 2023, doi: 10.19127/bshealthscience.1325058.
ISNAD Gürer Giray, Burcu. “Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı Ve Argan Yağının in Vitro Antibakteriyal Ve Antifungal Özelliklerinin Belirlenmesi”. Black Sea Journal of Health Science 6/4 (October 2023), 579-583. https://doi.org/10.19127/bshealthscience.1325058.
JAMA Gürer Giray B. Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi. BSJ Health Sci. 2023;6:579–583.
MLA Gürer Giray, Burcu. “Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı Ve Argan Yağının in Vitro Antibakteriyal Ve Antifungal Özelliklerinin Belirlenmesi”. Black Sea Journal of Health Science, vol. 6, no. 4, 2023, pp. 579-83, doi:10.19127/bshealthscience.1325058.
Vancouver Gürer Giray B. Piren Otu Yağı, Tüylü Adaçayı Yağı, Aynisafa Yağı, Zerdeçal Yağı ve Argan Yağının in Vitro Antibakteriyal ve Antifungal Özelliklerinin Belirlenmesi. BSJ Health Sci. 2023;6(4):579-83.