Research Article
BibTex RIS Cite
Year 2024, Volume: 16 Issue: 1, 7 - 13, 31.07.2024

Abstract

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2), 265-267.
  • Akyol, E., & Korkmaz, A. (2008). The Effect of –5°C Cold Application..to..Protect Honeycombs against Greater Wax-Moth Galleria mellonella Damage. Uludağ Bee Journal, 8, 26-9.
  • Akyol, E., Yeninar, H., Şahinler, N., & Ceylan, D. A. (2009). The Using..of..Carbon..dioxide (CO2) on Controlling of The Greater Wax Moth’s Galleria mellonella L. (Lepidoptera: Pyralidae) Damages. Uludağ Bee Journal, 9, 26-31.
  • Al-Mashhadani, M., & Al-Joboory, R. (2022). Effect of Bacillus thuringiensis on the biological aspects of the great waxworm Galleria mellonella. International Journal of Health Sciences, 14886-14893.
  • Anderson, D. L., & Trueman, J. W. H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental & Applied Acarology, 24, 165-189.
  • Aydın, L. (2021). Varroosis. In: A. Doğanay, & L. Aydın (Eds.), Bal Arısı Yetiştiriciliği, Ürünleri, Sağlığı (pp 250-264). Dora Basımevi.
  • Balpande, S., & Yadav, A. (2021). Effect of bio-pesticides on mortality of greater wax moth Galleria mellonella L. Current Journal of Applied Science and Technology, 39- 47.
  • Ben-Dov, E., Boussiba, S., & Zaritsky, A. (1995). Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177(10), 2851-2857.
  • Bezerra Filho, C. M., da Silva, L. C. N., da Silva, M. V., LøbnerOlesen, A., Struve, C., Krogfelt, K. A., & Vilela Oliva, M. L. (2020). Antimicrobial and antivirulence action of Eugenia brejoensis essential oil in vitro and in vivo ınvertebrate models. Frontiers in Microbiology, 11, 506073.
  • Bismuth, H., Brasseur, G., Ezraty, B., & Aussel, L. (2021). Bacterial genetic approach to the study of reactive oxygen species production in Galleria mellonella during Salmonella infection. Frontiers in Cellular and Infection Microbiology, 11.
  • Boşgelmez, A., Cakmakçi, L., Gürkan, B., Gürkan, F., & Cetinkaya, G. (1983). The effects of Bacillus thuringiensis on the greater wax moth, Galleria mellonella (L.) (Lepidoptera: Galleriidae). Mikrobiyoloji Bülteni, 17, 233- 42.
  • Ertürk, Y. E., & Yılmaz, O. (2013). Organic beekeeping in Turkey. COMU Journal of Agriculture Faculty, 1, 35-42.
  • Farida, B., Oulebsir-Mohandkaci, H., Belaid, M., Irnatene, H., & Mammeri, S. (2017). Isolation of entomopathogenic bacteria from larvae of a Lepidopteran specie; Galleria mellonella and study of their insecticidal effect. The Journal Agriculture and Forestry, 63(4).
  • Finney, D. J. (1952). Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press.
  • Fuchs, B., O'Brien, E., Khoury, J., & Mylonakis, E. (2010). Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence, 1(6), 475-482.
  • Girişgin, A. O. (2021). Petek güveleri (Büyük petek güvesi). In: A. Doğanay, & L. Aydın (Eds.), Bal Arısı Yetiştiriciliği, Ürünleri, Sağlığı (pp 267-273). Dora Yayıncılık.
  • Girişgin, A. O., Çimenlikaya, N., Aydın, L., & Zengin, S. A. (2022). Experimentation of Essential Oils and Entomopathogenic Fungi Against Wax Moth Larvae in Laboratory Conditions. Turkiye Parazitol Dergisi, 46(4), 322-326.
  • Ignasiak, K., & Maxwell, A. (2017). Galleria mellonella (Greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Research Notes, 10(1).
  • Jacobsen, I. (2014). Galleria mellonella as a model host to study virulence of Candida. Virulence, 5(2), 237-239.
  • Kavanagh, K., & Reeves, E. (2004). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. Fems Microbiology Reviews, 28(1), 101-112.
  • Kwadha, C. A., Ongamo, G. O., Ndegwa, P. N., Raina, S. K., & Fombong, A.T. (2017). The biology and control of the greater wax moth, Galleria mellonella. Insects, 8, 61.
  • Mahmoud, M. A., & Abdel-Rahman, Y. A. (2021). Influence of some honey bee products and plant oils on the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). Egyptian Academic Journal Biological Science (A. Entomology), 14, 9-20.
  • Moar, W.J., Pusztzai-Carey, M., & Mack, T.P. (1995). Toxity of purified proteins and the HD-1 strain from Bacillus thuringiensis againts lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 88, 606- 609.
  • Omer, S., Faraj, N., & Faraj, N. (2023). Insecticidal activity of some plant extract against greater wax moth larvae (Galleria mellonella L.). Agricultural Science, 6(2), 78-88.
  • Paulraj, S., Govindasamy, U., & Pernamallur, S. (2021). Büyük mum güvesi, Galleria mellonella Linnaeus'un (Lepidoptera: Pyralidae) depolanmış durumda yönetimi için botanik özütlerin değerlendirilmesi. ̇ Uludağ Arıcılık Dergisi, 21(2), 227-236.
  • Pereira, T., Barros, P., Fugisaki, L., Rossoni, R., Ribeiro, F., Menezes, R., & Scorzoni, L. (2018). Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. Journal of Fungi, 4(4), 128.
  • Quiroz-Castañeda, R., Mendoza-Mejía, A., Obregón-Barboza, V., Martínez-Ocampo, F., Hernández-Mendoza, A., Martínez-Garduño, F., & Dantán-González, E. (2015). Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. Biomed Research International, 1-10.
  • Rejeb, S., Lereclus, D., & Slamti, L. (2017). Analysis of abrb expression during the infectious cycle of Bacillus thuringiensisreveals population heterogeneity. Frontiers in Microbiology, 8.
  • Said, S. M., Hammam, M.A., & Abd-el Kader, S. K. (2019). Insecticidal activity against the greater wax moth (Galleria mellonella L.) and chemical composition of five plant essential oils. Menoufia Journal of Plant Protection, 4, 145-61.
  • Salamitou, S., Ramisse, F., Brehélin, M., Bourguet, D., Gilois, N., Gominet, M., & Lereclus, D. (2000). The plcr regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology, 146(11), 2825-2832.
  • Sciuto, A., Martorana, A., Fernández-Piñar, R., Mancone, C., Polissi, A., & Imperi, F. (2018). Pseudomonas aeruginosa lpte is crucial for lptd assembly, cell envelope integrity, antibiotic resistance and virulence. Virulence, 9(1), 1718- 1733.
  • Scorzoni, L., Silva, A., Singulani, J., Leite, F., Oliveira, H., Silva, R., & Mendes-Giannini, M. (2015). Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence, 6(8), 766-776.
  • Telles, D. M., Martineli, G. M., Scaloppi, M. F., Ferreira Da Luz, M. P., & Kadri, S. M. (2020). Natural products can efficiently control the greater wax moth (Lepidoptera: Pyralidae), but are harmless to honey bees. Sociobiology, 67,89-93.
  • Uygur, Ş. Ö., & Girişgin, A. O. (2008). Diseases and pests of honeybee. Uludağ Bee Journal, 8, 130-42.
  • Viegas, S., Mil‐Homens, D., Fialho, A., & Arraiano, C. (2013). The virulence of Salmonella enterica serovar typhimurium in the insect model Galleria mellonella is impaired by mutations in Rnase e and Rnase iii. Applied and Environmental Microbiology, 79(19), 6124-6133.
  • Wojda, I. (2016). Immunity of the greater wax moth Galleria mellonella. Insect Science, 24(3), 342-357

The Use of Some Herbal Essential Oils Against Galleria mellonella Larvae and Testing of Bacillus thuringiensis Bacterium Isolated from Galleria mellonella Under Laboratory Conditions

Year 2024, Volume: 16 Issue: 1, 7 - 13, 31.07.2024

Abstract

Larvae of wax moths cause great damage in honey bee hives and especially in stored honeycombs. Biological control methods are especially important in the control of wax moth in warehouses, as they do not harm the bee, the product and the environment. This study was carried out to determine the effect of 5%, 10%, 25%, 45% and 55% of peppermint, thyme, nettle seed, and walnut herbal oils and GB1 Bacillus sp. (OR227363) against wax moth larvae (Galleria mellonella) (L1-L3) under laboratory conditions. For each group of fifteen larvae, four herbal oil and one bacterial trials were conducted and two control groups were formed. The trials were conducted in glass jars and the larvae were kept in an oven at 25°C temperature/75% relative humidity. Each jar was checked every day for two weeks and dead/viable larvae were recorded and the dead ones were removed from the jar. As a result of the dose trials, it was determined that the best dose was 2.835x109 cfu/mL for bacteria and 5% concentration of thyme and walnut oil for herbal oil. According to the data obtained, it is thought that GB1 Bacillus sp. isolate can be used as an alternative control method against wax moth larvae.

Ethical Statement

Since the study concerns invertebrates does not require any ethics committee authorisation. (Article 4, Paragraph 1-d of the Regulation on the Working Procedures and Principles of Animal Experiments Ethics Committees published in the Official Gazette dated 15/2/2014 and numbered 28914 based on Article 14 of the Higher Education Law No. 2547.)

Thanks

I would like to thank Artvin Çoruh University Beekeeping Research and Application Centre and Filiz Gülbin GÖKDEMİR for their help in the provision and identification of Galleria mellonella.

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2), 265-267.
  • Akyol, E., & Korkmaz, A. (2008). The Effect of –5°C Cold Application..to..Protect Honeycombs against Greater Wax-Moth Galleria mellonella Damage. Uludağ Bee Journal, 8, 26-9.
  • Akyol, E., Yeninar, H., Şahinler, N., & Ceylan, D. A. (2009). The Using..of..Carbon..dioxide (CO2) on Controlling of The Greater Wax Moth’s Galleria mellonella L. (Lepidoptera: Pyralidae) Damages. Uludağ Bee Journal, 9, 26-31.
  • Al-Mashhadani, M., & Al-Joboory, R. (2022). Effect of Bacillus thuringiensis on the biological aspects of the great waxworm Galleria mellonella. International Journal of Health Sciences, 14886-14893.
  • Anderson, D. L., & Trueman, J. W. H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental & Applied Acarology, 24, 165-189.
  • Aydın, L. (2021). Varroosis. In: A. Doğanay, & L. Aydın (Eds.), Bal Arısı Yetiştiriciliği, Ürünleri, Sağlığı (pp 250-264). Dora Basımevi.
  • Balpande, S., & Yadav, A. (2021). Effect of bio-pesticides on mortality of greater wax moth Galleria mellonella L. Current Journal of Applied Science and Technology, 39- 47.
  • Ben-Dov, E., Boussiba, S., & Zaritsky, A. (1995). Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177(10), 2851-2857.
  • Bezerra Filho, C. M., da Silva, L. C. N., da Silva, M. V., LøbnerOlesen, A., Struve, C., Krogfelt, K. A., & Vilela Oliva, M. L. (2020). Antimicrobial and antivirulence action of Eugenia brejoensis essential oil in vitro and in vivo ınvertebrate models. Frontiers in Microbiology, 11, 506073.
  • Bismuth, H., Brasseur, G., Ezraty, B., & Aussel, L. (2021). Bacterial genetic approach to the study of reactive oxygen species production in Galleria mellonella during Salmonella infection. Frontiers in Cellular and Infection Microbiology, 11.
  • Boşgelmez, A., Cakmakçi, L., Gürkan, B., Gürkan, F., & Cetinkaya, G. (1983). The effects of Bacillus thuringiensis on the greater wax moth, Galleria mellonella (L.) (Lepidoptera: Galleriidae). Mikrobiyoloji Bülteni, 17, 233- 42.
  • Ertürk, Y. E., & Yılmaz, O. (2013). Organic beekeeping in Turkey. COMU Journal of Agriculture Faculty, 1, 35-42.
  • Farida, B., Oulebsir-Mohandkaci, H., Belaid, M., Irnatene, H., & Mammeri, S. (2017). Isolation of entomopathogenic bacteria from larvae of a Lepidopteran specie; Galleria mellonella and study of their insecticidal effect. The Journal Agriculture and Forestry, 63(4).
  • Finney, D. J. (1952). Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press.
  • Fuchs, B., O'Brien, E., Khoury, J., & Mylonakis, E. (2010). Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence, 1(6), 475-482.
  • Girişgin, A. O. (2021). Petek güveleri (Büyük petek güvesi). In: A. Doğanay, & L. Aydın (Eds.), Bal Arısı Yetiştiriciliği, Ürünleri, Sağlığı (pp 267-273). Dora Yayıncılık.
  • Girişgin, A. O., Çimenlikaya, N., Aydın, L., & Zengin, S. A. (2022). Experimentation of Essential Oils and Entomopathogenic Fungi Against Wax Moth Larvae in Laboratory Conditions. Turkiye Parazitol Dergisi, 46(4), 322-326.
  • Ignasiak, K., & Maxwell, A. (2017). Galleria mellonella (Greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Research Notes, 10(1).
  • Jacobsen, I. (2014). Galleria mellonella as a model host to study virulence of Candida. Virulence, 5(2), 237-239.
  • Kavanagh, K., & Reeves, E. (2004). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. Fems Microbiology Reviews, 28(1), 101-112.
  • Kwadha, C. A., Ongamo, G. O., Ndegwa, P. N., Raina, S. K., & Fombong, A.T. (2017). The biology and control of the greater wax moth, Galleria mellonella. Insects, 8, 61.
  • Mahmoud, M. A., & Abdel-Rahman, Y. A. (2021). Influence of some honey bee products and plant oils on the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). Egyptian Academic Journal Biological Science (A. Entomology), 14, 9-20.
  • Moar, W.J., Pusztzai-Carey, M., & Mack, T.P. (1995). Toxity of purified proteins and the HD-1 strain from Bacillus thuringiensis againts lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 88, 606- 609.
  • Omer, S., Faraj, N., & Faraj, N. (2023). Insecticidal activity of some plant extract against greater wax moth larvae (Galleria mellonella L.). Agricultural Science, 6(2), 78-88.
  • Paulraj, S., Govindasamy, U., & Pernamallur, S. (2021). Büyük mum güvesi, Galleria mellonella Linnaeus'un (Lepidoptera: Pyralidae) depolanmış durumda yönetimi için botanik özütlerin değerlendirilmesi. ̇ Uludağ Arıcılık Dergisi, 21(2), 227-236.
  • Pereira, T., Barros, P., Fugisaki, L., Rossoni, R., Ribeiro, F., Menezes, R., & Scorzoni, L. (2018). Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. Journal of Fungi, 4(4), 128.
  • Quiroz-Castañeda, R., Mendoza-Mejía, A., Obregón-Barboza, V., Martínez-Ocampo, F., Hernández-Mendoza, A., Martínez-Garduño, F., & Dantán-González, E. (2015). Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. Biomed Research International, 1-10.
  • Rejeb, S., Lereclus, D., & Slamti, L. (2017). Analysis of abrb expression during the infectious cycle of Bacillus thuringiensisreveals population heterogeneity. Frontiers in Microbiology, 8.
  • Said, S. M., Hammam, M.A., & Abd-el Kader, S. K. (2019). Insecticidal activity against the greater wax moth (Galleria mellonella L.) and chemical composition of five plant essential oils. Menoufia Journal of Plant Protection, 4, 145-61.
  • Salamitou, S., Ramisse, F., Brehélin, M., Bourguet, D., Gilois, N., Gominet, M., & Lereclus, D. (2000). The plcr regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology, 146(11), 2825-2832.
  • Sciuto, A., Martorana, A., Fernández-Piñar, R., Mancone, C., Polissi, A., & Imperi, F. (2018). Pseudomonas aeruginosa lpte is crucial for lptd assembly, cell envelope integrity, antibiotic resistance and virulence. Virulence, 9(1), 1718- 1733.
  • Scorzoni, L., Silva, A., Singulani, J., Leite, F., Oliveira, H., Silva, R., & Mendes-Giannini, M. (2015). Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence, 6(8), 766-776.
  • Telles, D. M., Martineli, G. M., Scaloppi, M. F., Ferreira Da Luz, M. P., & Kadri, S. M. (2020). Natural products can efficiently control the greater wax moth (Lepidoptera: Pyralidae), but are harmless to honey bees. Sociobiology, 67,89-93.
  • Uygur, Ş. Ö., & Girişgin, A. O. (2008). Diseases and pests of honeybee. Uludağ Bee Journal, 8, 130-42.
  • Viegas, S., Mil‐Homens, D., Fialho, A., & Arraiano, C. (2013). The virulence of Salmonella enterica serovar typhimurium in the insect model Galleria mellonella is impaired by mutations in Rnase e and Rnase iii. Applied and Environmental Microbiology, 79(19), 6124-6133.
  • Wojda, I. (2016). Immunity of the greater wax moth Galleria mellonella. Insect Science, 24(3), 342-357
There are 36 citations in total.

Details

Primary Language English
Subjects Zoology (Other), Bee and Silkworm Breeding and Improvement
Journal Section Research Articles
Authors

Mehtap Usta 0000-0001-7656-5655

Publication Date July 31, 2024
Submission Date February 20, 2024
Acceptance Date June 19, 2024
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Usta, M. (2024). The Use of Some Herbal Essential Oils Against Galleria mellonella Larvae and Testing of Bacillus thuringiensis Bacterium Isolated from Galleria mellonella Under Laboratory Conditions. Bee Studies, 16(1), 7-13.