Translation
BibTex RIS Cite

Radyolojide Tıbbi Bir Cihaz Olarak Yapay Zeka: Avrupa ve Amerika Birleşik Devletleri'nde Etik ve Yasal Sorunlar

Year 2020, Volume: 1 Issue: 1, 187 - 210, 25.12.2020

Abstract

Yapay zeka (AI) uygulamalarına dünya çapında ilgi hızla artmaktadır. Tıpta, makine öğrenmesi/derin öğrenmeye dayalı cihazların, özellikle de görüntü analizi için kullanılanların çoğalması yapay zekanın sağlık hizmetlerinde kullanımı için yeni önemli zorluklar ortaya çıkaracaktır. Bu durum kaçınılmaz olarak çok sayıda yasal ve etik soruyu gündeme getirmektedir. Bu yazıda, tıbbi cihaz geliştirme bağlamında yapay zeka düzenlemesinin durumunu ve gelecekte yapay zeka uygulamalarını güvenli ve kullanışlı hale getirme stratejilerini analiz ediyoruz. Şu anda meydana gelen gelişmeleri değerlendirerek, Avrupa ve Amerika Birleşik Devletleri'nde tıbbi cihazları ve veri korumayı düzenleyen yasal çerçeveyi analiz ediyoruz. Avrupa Birliği (AB) bu alanlarda yeni mevzuatla ile (Genel Veri Koruma Yönetmeliği [GDPR], Siber Güvenlik Yönergesi, Tıbbi Cihazlar Yönetmeliği, in vitro Tanı Amaçlı Tıbbi Cihaz Yönetmeliği) reformlar yapmaktadır. Bu reformlar kademeli olmakla birlikte ilk etkisini Mayıs 2018'de yürürlüğe giren GDPR ve Siber Güvenlik Yönergesi ile yaptı. Amerika Birleşik Devletleri (ABD) ise düzenleme yetkilerini ağırlıklı olarak Gıda ve İlaç Dairesine bırakmıştır. Bu makale hem yasal hem de etik hesap verebilirlik konularını ele almaktadır. Tıbbi cihaz karar verme süreçleri büyük ölçüde öngörülemez, bu nedenle yaratıcıları bundan sorumlu tutmak açıkça endişelere yol açacaktır. AI uygulamalarını düzenlemek için yapılabilecek çok şey var. Bu doğru ve zamanında yapılırsa, yapay zeka tabanlı teknolojinin radyoloji ve diğer alanlarda potansiyeli paha biçilmez olacaktır.

References

  • Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131 - [1]
  • Russell S, Bohannon J (2015) Artificial intelligence. Fears of an AI pioneer. Science 349:252 - [2]
  • Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131:129–133 - [3]
  • Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T (2017) Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 69:2657–2664 - [4]
  • Jha S (2016) Will computers replace radiologists? Available via https://www.medscape.com/viewarticle/863127 - [5]
  • Sachs PB, Gassert G, Cain M, Rubinstein D, Davey M, Decoteau D (2013) Imaging study protocol selection in the electronic medical re-cord. J Am Coll Radiol 10:220–222 - [6]
  • Chen H, Zhang Y, Zhang W et al (2017) Low-dose CT via convo-lutional neural network. Biomed Opt Express 8:679–694 - [7]
  • Golkov V, Dosovitskiy A, Sperl JI et al (2016) Q-space deep lear-ning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 35:1344–1351 - [8]
  • Lakhani P, Prater AB, Hutson RK et al (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15:350–359 - [9]
  • Mayo RC, Leung J (2017) Artificial intelligence and deep learning - Radiology's next frontier? Clin Imaging 49:87–88 - [10]
  • Jha S, Topol EJ (2016) Adapting to artificial intelligence: radiolo-gists and pathologists as information specialists. JAMA 316:2353–2354 - [11]
  • Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229 - [12]
  • Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18:570–584 - [13]
  • King BF Jr (2017) Guest editorial: discovery and artificial intelli-gence. AJR Am J Roentgenol 209:1189–1190 - [14]
  • King BF Jr (2018) Artificial intelligence and radiology: what will the future hold? J Am Coll Radiol 15:501–503 - [15]
  • Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219 - [16]
  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521: 436–444 - [17]
  • Pesapane F, CodariM, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again on the wavefront of innovation in medicine. Eur Radiol Exp. https://doi.org/10.1186/s41747-018-0061-6 - [18]
  • Yi PH, Hui FK, Ting DSW(2018) Artificial intelligence and radio-logy: collaboration is key. J Am Coll Radiol. https://doi.org/10.1016/j.jacr.2017.12.037 - [19]
  • Dheeba J, Albert Singh N, Tamil Selvi S (2014) Computer-aided detection of breast cancer on mammograms: a swarm intelligence opti-mized wavelet neural network approach. J Biomed Inform 49: 45–52 - [20]
  • Summers RM, Beaulieu CF, Pusanik LM et al (2000) Automated polyp detector for CT colonography: feasibility study. Radiology 216:284–290 - [21]
  • Chen S, Suzuki K,MacMahon H (2011) Development and evalua-tion of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with sup-port vector classification. Med Phys 38:1844–1858 - [22]
  • Perez-Ramirez U, Arana E, Moratal D (2014) Computer-aided de-tection of brain metastases using a three-dimensional template-based matching algorithm. Conf Proc IEEE Eng Med Biol Soc 2014: 2384– 2387 - [23]
  • Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine lear-ning for medical imaging. Radiographics 37:505–515 - [24]
  • Char DS, Shah NH, Magnus D (2018) Implementing machine le-arning in health care - addressing ethical challenges. N Engl J Med 378:981–983 - [25]
  • Angwin J, Larson J, Mattu S, Kirchner L (2016) Machine Bias. Available via http://www.propublica.org/article/machine-bias-riskassessments-in-criminal-sentencing - [26]
  • Calo R (2017) Artificial Intelligence policy: a primer and road-map. Social Science Research Network. Available via https://lawreview.law.ucdavis.edu/issues/51/2/Symposium/51-2_Calo.pdf - [27]
  • Thrall JH, Li X, Li Q et al (2018) Artificial intelligence and mac-hine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15:504–508 - [28]
  • Ravi D, Wong C, Deligianni F et al (2017) Deep learning for he-alth informatics. IEEE J Biomed Health Inform 21:4–21 - [29]
  • Christenses HI, Carnegie C, Krovi V, Smart B (2016) From Inter-net to Robotics. Stone et al. Supra note. Available via http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf.Accessed 42 7 - [30]
  • Molteni M (2017) Wellness apps evade the FDA, only to land in court. WIRED. Available via https://www.wired.com/2017/04/wellness-apps-evade-fda-land-court/ - [31]
  • Majambere E (2011) Clarity, precision and unambiguity: aspects for effective legislative drafting. Commonwealth Law Bull 37:417–426 - [32]
  • Zittrain JIJ (2017) Ethics and governance of artificial intelligence. Available via https://www.media.mit.edu/groups/ethics-andgovernance/overview/ - [33]
  • Tsang L, Mulryne J, Strom L et al (2017) The impact of artificial intelligence on medical innovation in the european union and United States. Available via https://www.arnoldporter.com/~/media/files/perspectives/publications/2017/08/the-impact-of-artificialinteelligence-on-medical-innovation.pdf - [34]
  • Thierer A, O'Sullivan A, Russel R (2017) Artificial intelligence and public policy. Mercatus Research Paper. Available via https://www.mercatus.org/system/files/thierer-artificial-intelligence-policy-mrmercatus-v1.pdf - [35]
  • Scherer MU (2016) Regulating artificial intelligence systems: risks, challenges, competencies, and strategies. Harv JL Tech 29:354–400 - [36]
  • Law J (2009) A dictionary of law, Seventh edn. Oxford University Press, Oxford - [37]
  • Kohli M, Prevedello LM, Filice RW, Geis JR (2017) Implemen-ting machine learning in radiology practice and research. AJR Am J Ro-entgenol 208:754–760 - [38]
  • Mitchell T, Brynjolfsson E (2017) Track how technology is trans-forming work. Nature 544:290–292 - [39]
  • Kramer DB, Xu S, Kesselheim AS (2012) Regulation of medical devices in the United States and European Union. N Engl J Med 366:848–855 - [40]
  • European Economic Community (1993) 93/42/EEC – Council Di-rective concerning Medical Devices. Official Journal of the European Communities. Available via http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/medicaldevices_en - [41]
  • European Commission (2018) MDCG 2018–2 Future EUmedical device nomenclature – Description of requirements. Available via https://ec.europa.eu/docsroom/documents/28668 - [42]
  • European Economic Community (1990) 90/385/EEC – Council Directive on the approximation of the laws of the Member States rela-ting to active implantable medical devices. Council Directive. Available via https://ec.europa.eu/growth/single-market/europeanstandards/harmonised-standards/implantable-medical-devices_en - [43]
  • European Commission (1998) Directive 98/79/EC of the European Parliament and of the Council on in vitro diagnosticmedical devi-ces.Official Journal of the European Communities. Available via https://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices_en - [44]
  • The European Parliament and the Council of The European Union (2017) Regulation (EU) 2017/745 of the European Parliament and of the Council on medical devices, amending Directive 2001/83/EC, Regula-tion (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repea-ling Council Directives 90/385/EEC and 93/42/EEC. Official Journal of the European Communities. Available via https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745 - [45]
  • The European Parliament and the Council of The European Union (2017) Regulation (EU) 2017/746 of the European Parliament and of the Council on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU.Official Journal of the European Communities. Available via https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0746 - [46]
  • European Union (2018) Regulations, Directives and other acts. Available via https://europa.eu/european-union/eu-law/legal-acts_en - [47]
  • Crossley S, Eversheds LLP (2016) EU regulation of health infor-mation technology, software and mobile apps. Practical Law Global Gu-ide 2016(17):1–14 - [48]
  • 114th Congress (2015–2016) (2016) H.R.34 - 21st Century Cures Act. Available via https://www.congress.gov/bill/114th-congress/house-bill/34 - [49]
  • U.S. Food & Drug Administration (2018) Is The Product A Medi-cal Device? U.S. Department of Health and Human Services. Available via https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051512.htm - [50]
  • Méndez AJ, Tahoces PG, Lado MJ, Souto M, Vidal JJ (1998) Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms. Med Phys 25:957–964 - [51]
  • Azavedo E, Zackrisson S, Mejàre I, Heibert Arnlind M (2012) Is single reading with computer-aided detection (CAD) as good as double reading in mammography screening? A systematic review. BMC Med Imaging 12:22 - [52]
  • Recht M, Bryan RN (2017) Artificial intelligence: threat or boon to radiologists? J Am Coll Radiol 14:1476–1480 - [53]
  • Stark L (2018) Algorithmic psychometrics and the scalable sub-ject. Soc Stud Sci - [54]
  • Statista (2018) Online privacy - statistics & facts. Statistics Portal. Available via https://www.statista.com/topics/2476/online-privacy - [55]
  • Krittanawong C (2018) The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 48:e13–e14 - [56]
  • Kruskal JB, Berkowitz S, Geis JR, Kim W, Nagy P, Dreyer K (2017) Big data and machine learning-strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol 14:811–817 - [57]
  • Castelvecchi D (2016) Can we open the black box of AI? Nature 538:20–23 - [58]
  • Dilsizian SE, Siegel EL (2014) Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 16:441 - [59]
  • Allen G, Chan T (2017) Artificial intelligence and national secu-rity. Available via https://www.belfercenter.org/publication/artificialintelligence-and-national-security - [60]
  • Helbing D, Frey B, Gigerenzer G et al (2017) Will democracy sur-vive big data and artificial intelligence?. Scientific American. Available via https://www.scientificamerican.com/article/willdemocracy- survive-big-data-and-artificial-intelligence/. Accessed Feb 25 - [61]
  • The European Parliament and the Council of The European Union (1995) Directive 95/46/EC of the European Parliament and of the Coun-cil on the protection of individuals with regard to the processing of per-sonal data and on the free movement of such data. Off J Eur Communi-ties. Available via https://eur-lex.europa.eu/legalcontent/en/TXT/?uri=CELEX%3A31995L0046 - [62]
  • Powles J, Hodson H (2017) Google DeepMind and healthcare in an age of algorithms. Health Technol (Berl) 7:351–367 - [63]
  • The European Parliament and the Council of The European Union (2016) Directive (EU) 2016/1148 of the European Parliament and of the Council concerning measures for a high common level of security of network and information systems across the Union. Off J Eur - [64]
  • Communities. Available via https://eur-lex.europa.eu/legal-con-tent/EN/TXT/?toc=OJ:L:2016:194:TOC&uri=uriserv:OJ.L_.2016.194.01.0001.01.ENG - [65]
  • Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level cont-rol through deep reinforcement learning. Nature 518:529–533 - [66]
  • Verghese A, Shah NH, Harrington RA (2018) What this computer needs is a physician: humanism and artificial intelligence. JAMA 319:19–20 - [67]
  • Sardanelli F, HuninkMG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence-based radiology: why and how? Eur Radiol 20:1–15 - [68]
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Information and Technology Law, Medical and Health Law, Comparative Law
Journal Section Çeviriler
Authors

Filippo Pesapane This is me

Caterina Volonté This is me

Marina Codari This is me

Francesco Sardanelli This is me

Translators

Emine Meliknur Kılıç 0000-0003-0323-0293

Publication Date December 25, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

Chicago Pesapane, Filippo, Caterina Volonté, Marina Codari, and Francesco Sardanelli. “Radyolojide Tıbbi Bir Cihaz Olarak Yapay Zeka: Avrupa Ve Amerika Birleşik Devletleri’nde Etik Ve Yasal Sorunlar”. Translated by Emine Meliknur Kılıç. İzmir Bakırçay Üniversitesi Hukuk Fakültesi Dergisi 1, no. 1 (December 2020): 187-210.