Research Article
BibTex RIS Cite
Year 2024, , 1 - 18, 26.04.2024
https://doi.org/10.19111/bulletinofmre.1251299

Abstract

References

  • Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O. S., Cheng, F., Demura, H., Gaskell, R. W., Hashimoto, T., Hiraoka, K., Honda, T., Kubota, T., Matsuoka, M., Mizuno, T., Nakamura, R., Scheeres, D. J.,Yoshikawa, M. 2006. Mass and local topography measurements of Itokawa by Hayabusa. Science 312 (5778), 1344–1347.
  • Asphaug, E., Ostro, S. J., Hudson, R. S., Scheeres, D. J., Benz, W. 1998. Disruption of kilometre- sized asteroids by energetic collisions. Nature 393(6684), 437–440.
  • Ayachit, U., Bauer, A., Geveci, B. 2015. ParaView catalyst: Enabling in situ data analysis and visualization. Proceedings of ISAV 2015: 1st International Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage 25–29.
  • Barnett, C. T. 1976. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41(6), 1353–1364.
  • Barnett, A. H. 2021. Aliasing error of the exp(β1−z2) kernel in the nonuniform fast Fourier transform. Applied and Computational Harmonic Analysis 51, 1–16.
  • Barnett, A. H., Magland, J., Klinteberg, L. A. F. 2019. A parallel nonuniform fast fourier transform library based on an “Exponential of Semicircle” kernel. Journal on Scientific Computing 41(5), C479– C504.
  • Barnouin, O. S., Daly, M. G., Palmer, E. E. 2019. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience 12 (4), 247–252.
  • Bhattacharyya, B. K. 1966. Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body. Geophysics 31 (1), 97–121.
  • Chai, Y., Hinze, W. J. 1988. Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53 (6),837–845.
  • Chapman, C. R., Merline, W. J., Thomas, P. C., Joseph, J., Cheng, A. F., Izenberg, N. 2002. Impact history of Eros: Craters and boulders. Icarus 155 (1), 104–118.
  • Cheng, A. F., Santo, A. G., Heeres, K. J., Landshof, J. A., Farquhar, R. W., Gold, R. E., Lee, S. C. 1997. Near-Earth Asteroid Rendezvous: Mission overview. Journal of Geophysical Research: Planets 102 (E10), 23695–23708.
  • Chenot, D., Debeglia, N. 1990. Three-dimensional gravity or magnetic constrained depth inversion with lateral and vertical variation of contrast. Geophysics 55(3), 327–335.
  • Chesley, S. R., Farnocchia, D., Nolan, M. C., Vokrouhlický, D., Chodas, P. W., Milani, A., Spoto, F., Rozitis,B., Benner, L. A. M., Bottke, W. F., Busch, M.W., Emery, J. P., Howell, E. S., Lauretta, D. S., Margot, J. L., Taylor, P. A. 2014. Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu. Icarus 235, 5–22.
  • Cooley, J. W., Tukey, J. W. 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19 (90), 297.
  • Cynthia, A. 2002. Brewer. Available at: http://www. colorbrewer.org.
  • Delbo, M., Libourel, G., Wilkerson, J., Murdoch, N., Michel, P., Ramesh, K. T., Ganino, C., Verati, C., Marchi,S. 2014. Thermal fatigue as the origin of regolith on small asteroids. Nature 508 (7495), 233–236.
  • DellaGiustina, D. N., Emery, J. P., Golish, D. R. 2019. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy 3 (4), 341–351.
  • El Mir, C., Ramesh, K. T., Delbo, M. 2019. The efficiency of thermal fatigue in regolith generation on small airless bodies. Icarus 333, 356–370.
  • Eppes, M. C., Keanini, R. 2017. Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Reviews of Geophysics 55 (2), 470–508.
  • Eppes, M. C., McFadden, L. D., Wegmann, K. W., Scuderi,L. A. 2010. Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation. Geomorphology 123 (1–2), 97–108.
  • Fletcher, R. C., Buss, H. L., Brantley, S. L. 2006. A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth and Planetary Science Letters 244 (1–2), 444–457.
  • Floberghagen, R, Fehringer, M, Lamarre, D, Muzi, D, Frommknecht, B, Steiger, C, Piñeiro, J., da Costa Human Spaceflight, A. 2011. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy 85 (11), 749–758.
  • Fujiwara, A., Kadono, T., Nakamura, A. 1993. Cratering experiments into curved surfaces and their implication for craters on small satellites. Icarus 105 (2), 345–350.
  • Fujiwara, A., Kawaguchi, J., Yeomans, D. K.. 2006. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312 (5778), 1330–1334.
  • Garmier, R., Barriot, J. P., Konopliv, A. S., Yeomans, D. K. 2002. Modeling of the Eros gravity field as an ellipsoidal harmonic expansion from the NEAR Doppler tracking data. Geophysical Research Letters 29 (8), 72–1.
  • Greengard, L., Lee, J. Y. 2006. Accelerating the nonuniform fast Fourier transform. Society for Industrial and Applied Mathematics 46 (3), 443–454.
  • Hansen, R. O., Wang, X. 1988. Simplified frequency-domain expressions for potential fields of arbitrary three- dimensional bodies. Geophysics 53 (3), 365–374.
  • Hazeli, K., El Mir, C., Papanikolaou, S., Delbo, M., Ramesh, K. T. 2018. The origins of asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure. Icarus 304, 172–182.
  • Hirabayashi, M., Scheeres, D. J. 2014. Stress and failure analysis of rapidly rotating asteroid (29075) 1950 DA. The Astrophysical Journal Letters 798 (1), L8.
  • Holzhausen, G. R. 1989. Origin of sheet structure,1.Morphology and boundary conditions. Engineering Geology 27 (1–4), 225–278.
  • Kanamaru, M., Sasaki, S. 2019. Estimation of interior density distribution for small bodies: The case of asteroid Itokawa. Transactions of the Japan Society for Aeronautical and Space Sciences: Aerospace Technology Japan 17 (3), 270–275.
  • Kanamaru, M., Sasaki, S.,Wieczorek, M. 2019. Density distribution of asteroid 25143 Itokawa based on smooth terrain shape. Planetary and Space Science 174, 32–42.
  • Keiner, J., Kunis, S., Potts, D. 2009. Using NFFT 3---A software library for various nonequispaced fast Fourier transforms. Association for Computing Machinery Transactions on Mathematical Software (TOMS) 36 (4).
  • Klokočník, J., Kostelecký, J., Kalvoda, J., Eppelbaum, L. V., Bezděk, A. 2014. Gravity disturbances, Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. Journal of Earth Science Research 2 (3), 88–101.
  • Konopliv, A. S., Miller, J. K., Owen, W. M., Yeomans, D. K., Giorgini, J. D., Garmier, R., Barriot, J. P. 2002. A global solution for the gravity Field, rotation, landmarks, and ephemeris of Eros. Icarus 160 (2), 289–299.
  • Lamp, J. L., Marchant, D. R., Mackay, S. L., Head, J. W. 2017. Thermal stress weathering and the spalling of Antarctic rocks. Journal of Geophysical Research: Earth Surface 122 (1), 3–24.
  • Lauretta, D. S., Bartels, A. E., Barucci, M. A. 2015. The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics and Planetary Science 50, 834–849.
  • Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A. 2019. The unexpected surface of asteroid (101955) Bennu. Nature 568 (7750), 55–60.
  • Lee, T., Biehler, S. 1991. Inversion modeling of gravity with prismatic mass bodies. Geophysics 56 (9), 1365–1376.
  • Lee, J. Y., Greengard, L. 2005. The type 3 nonuniform FFT and its applications. Journal of Computational Physics 206 (1), 1–5.
  • Levi, F. A. 1973. Thermal fatigue: a possible source of structural modifications in meteorites. Meteoritics 8 (3), 209–221.
  • Magri, C., Consolmagno, G. J., Ostrch, S. J., Benner, L.M., Beeney, B. R. 2001. Radar constaints on asteroid regolith properties using 433 Eros as ground truth. Meteoritics and Planetary Science 36 (12), 1697–1709.
  • McCoy, T. J., Nittler, L. R., Burbine, T. H., Trombka, J. I., Clark, P. E., Murphy, M. E. 2000. Anatomy of a partially differentiated asteroid: A “NEAR”- sighted view of Acapulcoites and Lodranites. Icarus 148 (1), 29–36.
  • McFadden, L. D., Eppes, M. C., Gillespie, A. R., Hallet,2005. Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. Geological Society of America Bulletin 117 (1–2), 161–173.
  • McMahon, J. W., Scheeres, D. J., Chesley, S. R., French, A., Brack, D., Farnocchia, D., Takahashi, Y., Rozitis, B., Tricarico, P., Mazarico, E., Bierhaus, B., Emery, J. P., Hergenrother, C. W., Lauretta, D. S. 2020. Dynamical evolution of simulated particles ejected from Asteroid Bennu. Journal of Geophysical Research: Planets 125 (8), e2019JE006229.
  • Miller, J. K., Konopliv, A. S., Antreasian, P. G., Bordi, J. J., Chesley, S., Helfrich, C. E., Owen, W. M., Wang,T. C., Williams, B. G., Yeomans, D. K., Scheeres,D. J. 2002. Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155 (1), 3–17.
  • Molaro, J. L., Byrne, S., Langer, S. A. 2015. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown. Journal of Geophysical Research: Planets 120 (2), 255–277.
  • Molaro, J. L., Walsh, K. J., Jawin, E. R. 2020a. In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface. Nature Communications 11 (1), 1–11.
  • Molaro, J. L., Hergenrother, C. W., Chesley, S. R., Walsh,K. J., Hanna, R. D., Haberle, C. W., Schwartz,S. R., Ballouz, R. L., Bottke, W. F., Campins,H. J., Lauretta, D. S. 2020b. Thermal fatigue as a driving mechanism for activity on AsteroidBennu. Journal of Geophysical Research: Planets 125 (8), e2019JE006325.
  • Murchie, S. L., Pieters, C. M. 1996. Spectral properties and rotational spectral heterogeneity of 433 Eros. Journal of Geophysical Research: Planets 101 (E1), 2201–2214.
  • Murphy, C. A. 2007. Interpreting FTG Gravity Data using Horizontal Tensor Components. Electromagnetic, Gravity and Magnetic International Workshop 2017, cp-166-00004.
  • Murphy, C., Dickinson, J. 2009. Exploring exploration play models with ftg gravity data. European Association of Geoscientists and Engineers, cp- 241-00020.
  • Nakamura, T., Noguchi, T., Tanaka, M. 2011. Itokawa Dust Particles: A direct link between s-type asteroids and ordinary chondrites. Science 333 (6046), 1113.
  • Nelson, J. B. 1988a. Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation. Geophysics 53 (7), 957–966.
  • Nelson, J. B. 1988b. Comparison of gradient analysis techniques for linear two- dimensional magnetic sources. Geophysics 53(8), 1088–1095.
  • Ostro, S. J., Campbell, D. B., Simpson, R. A. 1992. Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone. Journal of Geophysical Research 97 (E11), 18227.
  • Parker, R. L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International 31 (4), 447–455.
  • Pawlowski, B. 2012. Gravity gradiometry in resource exploration. The Leading Edge 17 (1), 51.
  • Pedersen, L. B. 1978. Wavenumber domain expressions for potential fields from arbitrary 2-, 21/2-, and 3-dimensional bodies. Geophysics 43 (3), 626–630.
  • Pedersen, L. B., Rasmussen, T. M. 1990. The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophysics 55 (12), 1558–1566.
  • Richardson, J. E., Melosh, H. J., Greenberg, R. 2004. Impact-induced seismic activity on asteroid 433 Eros: A surface modification process. Science 306 (5701), 1526–1529.
  • Robinson, M. S., Thomas, P. C., Veverka, J. 2002. The geology of 433 Eros. Meteoritics and Planetary Science 37 (12), 1651–1684.
  • Saito, J., Miyamoto, H., Nakamura, R. 2006. Detailed images of Asteroid 25143 Itokawa from Hayabusa. Science 312 (5778), 1341.
  • Sánchez, P., Scheeres, D. J. 2014. The strength of regolith and rubble pile asteroids. Meteoritics and Planetary Science 49 (5) 788–811.
  • Scheeres, D. J., Britt, D., Carry, B., Holsapple, K. A. 2015. Asteroid interiors and morphology. Asteroids IV, 745–766.
  • Scheeres, D. J., McMahon, J. W., French, A. S. 2019. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy 3 (4), 352–361.
  • Scheeres, D. J., French, A. S., Tricarico, P. 2020. Heterogeneous mass distribution of the rubble- pile asteroid (101955) Bennu. Science Advances 6 (41).
  • Si, H. 2015. TetGen, a delaunay-based quality tetrahedral mesh generator. Association for Computing Machinery Transactions on Mathematical Software 41(2).
  • Sorsa, L. I., Takala, M., Bambach, P., Deller, J., Vilenius, E., Agarwal, J., Carroll, K. A., Karatekin, Ö., Pursiainen, S. 2020. Tomographic inversion of gravity gradient field for a synthetic Itokawa model. Icarus 336, 113425.
  • Stokes, G. H., Evans, J. B., Viggh, H. E. M., Shelly, F. C., Pearce, E. C. 2000. Lincoln Near-Earth Asteroid Program (LINEAR). Icarus 148 (1), 21–28.
  • Tanbakouei, S., Trigo-Rodriguez, J. M., Sort, J., Michel, P., Blum, J., Nakamura, T., Williams, I. 2019. Mechanical properties of particles from the surface of asteroid 25143 Itokawa. Astronomy and Astrophysics 629, A119.
  • Thirumalai, K., Demou, S. G. 1970. Effect of reduced pressure on thermal-expansion behavior of rocks and its significance to thermal fragmentation. Journal of Applied Physics 41(13), 5147–5151.
  • Thomas, P. C., Joseph, J., Carcich, B. 2002. Eros: Shape, topography, and slope processes. Icarus 155 (1), 18–37.
  • Tontini, F. C., Cocchi, L., Carmisciano, C. 2009. Rapid 3-d forward model of potential fields with application to the palinuro seamount magnetic anomaly (Southern Tyrrhenian Sea, Italy). Journal of Geophysical Research: Solid Earth 114 (2), 2103.
  • Trombka, J. I., Squyres, S. W., Bruckner, J. 2000. The Elemental Composition of Asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray Spectrometer. Science 289 (5487), 2101–2105.
  • Veverka, J., Thomas, P. C., Bell, J. F. 1999. Imaging of Asteroid 433 Eros during NEARs Flyby Reconnaissance. Science 285 (5427), 562–564.
  • Veverka, J., Thomas, P. C., Robinson, M. 2001. Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith. Science 292 (5516), 484–488.
  • Walsh, K. J., Jawin, E. R., Ballouz, R. L. 2019. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience 12 (4), 242–246.Waragai, T. 1998. Effects of rock surface temperature on exfoliation, rock varnish, and lichens on a boulder in the Hunza Valley. Arctic and Alpine Research 30 (2), 184–192.
  • Werner, R. A., Scheeres, D. J. 1996. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celestial Mechanics and Dynamical Astronomy 65 (3), 313–344.
  • Whiteley, R. J., Tholen, D. J., Hergenrother, C. W. 2002. Lightcurve Analysis of four new monolithic fast- rotating asteroids. Icarus 157 (1), 139–154.
  • Wu, X. 1983. The computation of the spectrum of potential field due to 3-D arbitrary bodies with physical parameters varying with depth. Acta Geophysica Sinica 26 (2), 177–187.
  • Wu, L. 2016. Efficient modelling of gravity effects due to topographic masses using the Gauss-FFT method. Geophysical Journal International 205 (1), 160–178.
  • Wu, L. 2018. Comparison of 3-D Fourier forward algorithms for gravity modelling of prismatic bodies with polynomial density distribution. Geophysical Journal International 215 (3), 1865–1886.
  • Wu, L. 2019. Fourier-domain modeling of gravity effects caused by polyhedral bodies. Journal of Geodesy 93 (5), 635–653.
  • Wu, L. 2021a. Modified Parker’s method for gravitational forward and inverse modeling using general polyhedral models. Journal of Geophysical Research: Solid Earth 126 (10).
  • Wu, L. 2021b. Data and code for “Modified Parker’s method for gravitational forward and inverse modeling using general polyhedral models”.
  • Wu, L., Tian, G. 2014. High-precision fourier forward modeling of potential fields. Geophysics 79 (5), G59–G68.
  • Wu, L., Chen, L. 2016. Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrastVariable density contrast. Geophysics 81 (1), G13–G26.
  • Wu, L., Lin, Q. 2017. Improved Parker’s method for topographic models using Chebyshev series and low rank approximation. Geophysical Journal International 209 (2), 1296–1325.
  • Yano, H., Kubota, T., Miyamoto, H., Okada, T., Scheeres, D., Takagi, Y., Yoshida, K., Abe, M. 2006. Touchdown of the Hayabusa spacecraft at the muses sea on Itokawa. Science 312 (5778), 1350–1353.
  • Yeomans, D. K. 1995. Asteroid 433 Eros: the target body of the NEAR mission. Journal of the Astronautical Sciences 43 (4), 417–426.

Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT

Year 2024, , 1 - 18, 26.04.2024
https://doi.org/10.19111/bulletinofmre.1251299

Abstract

The internal structure and mass distribution of the terrestrial objects are yet unknown. The 2D gravity model with a constant density of the terrestrial objects can shed light on the surficial or textural heterogeneity due to topographic variations of the terrestrial objects. Three different asteroids, which are Bennu (101955), Itokawa (25143) and Eros (433) are modelled in this study. During the modelling phase, a different number of edges, elements, nodes, and faces are used to describe the 3D models of Bennu, Itokawa, and Eros. These 3D models are used in 2D Non-Uniform Fast Fourier Transform (NU-FFT) applications to obtain gravitational attraction with a constant density polyhedron model. Tensor gradients and tensor invariants of the modelled gravity anomaly are calculated. Three major outcomes are interpreted from tensor gradient and tensor invariants. Firstly, textural heterogeneity due to relatively low topography is detected in the central part of Bennu. Secondly, considerably different properties which can be related to surface variations between the two lobes of Itokawa are observed. Lastly, directional surficial heterogeneities were detected in Eros.

References

  • Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O. S., Cheng, F., Demura, H., Gaskell, R. W., Hashimoto, T., Hiraoka, K., Honda, T., Kubota, T., Matsuoka, M., Mizuno, T., Nakamura, R., Scheeres, D. J.,Yoshikawa, M. 2006. Mass and local topography measurements of Itokawa by Hayabusa. Science 312 (5778), 1344–1347.
  • Asphaug, E., Ostro, S. J., Hudson, R. S., Scheeres, D. J., Benz, W. 1998. Disruption of kilometre- sized asteroids by energetic collisions. Nature 393(6684), 437–440.
  • Ayachit, U., Bauer, A., Geveci, B. 2015. ParaView catalyst: Enabling in situ data analysis and visualization. Proceedings of ISAV 2015: 1st International Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage 25–29.
  • Barnett, C. T. 1976. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41(6), 1353–1364.
  • Barnett, A. H. 2021. Aliasing error of the exp(β1−z2) kernel in the nonuniform fast Fourier transform. Applied and Computational Harmonic Analysis 51, 1–16.
  • Barnett, A. H., Magland, J., Klinteberg, L. A. F. 2019. A parallel nonuniform fast fourier transform library based on an “Exponential of Semicircle” kernel. Journal on Scientific Computing 41(5), C479– C504.
  • Barnouin, O. S., Daly, M. G., Palmer, E. E. 2019. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience 12 (4), 247–252.
  • Bhattacharyya, B. K. 1966. Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body. Geophysics 31 (1), 97–121.
  • Chai, Y., Hinze, W. J. 1988. Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53 (6),837–845.
  • Chapman, C. R., Merline, W. J., Thomas, P. C., Joseph, J., Cheng, A. F., Izenberg, N. 2002. Impact history of Eros: Craters and boulders. Icarus 155 (1), 104–118.
  • Cheng, A. F., Santo, A. G., Heeres, K. J., Landshof, J. A., Farquhar, R. W., Gold, R. E., Lee, S. C. 1997. Near-Earth Asteroid Rendezvous: Mission overview. Journal of Geophysical Research: Planets 102 (E10), 23695–23708.
  • Chenot, D., Debeglia, N. 1990. Three-dimensional gravity or magnetic constrained depth inversion with lateral and vertical variation of contrast. Geophysics 55(3), 327–335.
  • Chesley, S. R., Farnocchia, D., Nolan, M. C., Vokrouhlický, D., Chodas, P. W., Milani, A., Spoto, F., Rozitis,B., Benner, L. A. M., Bottke, W. F., Busch, M.W., Emery, J. P., Howell, E. S., Lauretta, D. S., Margot, J. L., Taylor, P. A. 2014. Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu. Icarus 235, 5–22.
  • Cooley, J. W., Tukey, J. W. 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19 (90), 297.
  • Cynthia, A. 2002. Brewer. Available at: http://www. colorbrewer.org.
  • Delbo, M., Libourel, G., Wilkerson, J., Murdoch, N., Michel, P., Ramesh, K. T., Ganino, C., Verati, C., Marchi,S. 2014. Thermal fatigue as the origin of regolith on small asteroids. Nature 508 (7495), 233–236.
  • DellaGiustina, D. N., Emery, J. P., Golish, D. R. 2019. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy 3 (4), 341–351.
  • El Mir, C., Ramesh, K. T., Delbo, M. 2019. The efficiency of thermal fatigue in regolith generation on small airless bodies. Icarus 333, 356–370.
  • Eppes, M. C., Keanini, R. 2017. Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Reviews of Geophysics 55 (2), 470–508.
  • Eppes, M. C., McFadden, L. D., Wegmann, K. W., Scuderi,L. A. 2010. Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation. Geomorphology 123 (1–2), 97–108.
  • Fletcher, R. C., Buss, H. L., Brantley, S. L. 2006. A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth and Planetary Science Letters 244 (1–2), 444–457.
  • Floberghagen, R, Fehringer, M, Lamarre, D, Muzi, D, Frommknecht, B, Steiger, C, Piñeiro, J., da Costa Human Spaceflight, A. 2011. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy 85 (11), 749–758.
  • Fujiwara, A., Kadono, T., Nakamura, A. 1993. Cratering experiments into curved surfaces and their implication for craters on small satellites. Icarus 105 (2), 345–350.
  • Fujiwara, A., Kawaguchi, J., Yeomans, D. K.. 2006. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312 (5778), 1330–1334.
  • Garmier, R., Barriot, J. P., Konopliv, A. S., Yeomans, D. K. 2002. Modeling of the Eros gravity field as an ellipsoidal harmonic expansion from the NEAR Doppler tracking data. Geophysical Research Letters 29 (8), 72–1.
  • Greengard, L., Lee, J. Y. 2006. Accelerating the nonuniform fast Fourier transform. Society for Industrial and Applied Mathematics 46 (3), 443–454.
  • Hansen, R. O., Wang, X. 1988. Simplified frequency-domain expressions for potential fields of arbitrary three- dimensional bodies. Geophysics 53 (3), 365–374.
  • Hazeli, K., El Mir, C., Papanikolaou, S., Delbo, M., Ramesh, K. T. 2018. The origins of asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure. Icarus 304, 172–182.
  • Hirabayashi, M., Scheeres, D. J. 2014. Stress and failure analysis of rapidly rotating asteroid (29075) 1950 DA. The Astrophysical Journal Letters 798 (1), L8.
  • Holzhausen, G. R. 1989. Origin of sheet structure,1.Morphology and boundary conditions. Engineering Geology 27 (1–4), 225–278.
  • Kanamaru, M., Sasaki, S. 2019. Estimation of interior density distribution for small bodies: The case of asteroid Itokawa. Transactions of the Japan Society for Aeronautical and Space Sciences: Aerospace Technology Japan 17 (3), 270–275.
  • Kanamaru, M., Sasaki, S.,Wieczorek, M. 2019. Density distribution of asteroid 25143 Itokawa based on smooth terrain shape. Planetary and Space Science 174, 32–42.
  • Keiner, J., Kunis, S., Potts, D. 2009. Using NFFT 3---A software library for various nonequispaced fast Fourier transforms. Association for Computing Machinery Transactions on Mathematical Software (TOMS) 36 (4).
  • Klokočník, J., Kostelecký, J., Kalvoda, J., Eppelbaum, L. V., Bezděk, A. 2014. Gravity disturbances, Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. Journal of Earth Science Research 2 (3), 88–101.
  • Konopliv, A. S., Miller, J. K., Owen, W. M., Yeomans, D. K., Giorgini, J. D., Garmier, R., Barriot, J. P. 2002. A global solution for the gravity Field, rotation, landmarks, and ephemeris of Eros. Icarus 160 (2), 289–299.
  • Lamp, J. L., Marchant, D. R., Mackay, S. L., Head, J. W. 2017. Thermal stress weathering and the spalling of Antarctic rocks. Journal of Geophysical Research: Earth Surface 122 (1), 3–24.
  • Lauretta, D. S., Bartels, A. E., Barucci, M. A. 2015. The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics and Planetary Science 50, 834–849.
  • Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A. 2019. The unexpected surface of asteroid (101955) Bennu. Nature 568 (7750), 55–60.
  • Lee, T., Biehler, S. 1991. Inversion modeling of gravity with prismatic mass bodies. Geophysics 56 (9), 1365–1376.
  • Lee, J. Y., Greengard, L. 2005. The type 3 nonuniform FFT and its applications. Journal of Computational Physics 206 (1), 1–5.
  • Levi, F. A. 1973. Thermal fatigue: a possible source of structural modifications in meteorites. Meteoritics 8 (3), 209–221.
  • Magri, C., Consolmagno, G. J., Ostrch, S. J., Benner, L.M., Beeney, B. R. 2001. Radar constaints on asteroid regolith properties using 433 Eros as ground truth. Meteoritics and Planetary Science 36 (12), 1697–1709.
  • McCoy, T. J., Nittler, L. R., Burbine, T. H., Trombka, J. I., Clark, P. E., Murphy, M. E. 2000. Anatomy of a partially differentiated asteroid: A “NEAR”- sighted view of Acapulcoites and Lodranites. Icarus 148 (1), 29–36.
  • McFadden, L. D., Eppes, M. C., Gillespie, A. R., Hallet,2005. Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. Geological Society of America Bulletin 117 (1–2), 161–173.
  • McMahon, J. W., Scheeres, D. J., Chesley, S. R., French, A., Brack, D., Farnocchia, D., Takahashi, Y., Rozitis, B., Tricarico, P., Mazarico, E., Bierhaus, B., Emery, J. P., Hergenrother, C. W., Lauretta, D. S. 2020. Dynamical evolution of simulated particles ejected from Asteroid Bennu. Journal of Geophysical Research: Planets 125 (8), e2019JE006229.
  • Miller, J. K., Konopliv, A. S., Antreasian, P. G., Bordi, J. J., Chesley, S., Helfrich, C. E., Owen, W. M., Wang,T. C., Williams, B. G., Yeomans, D. K., Scheeres,D. J. 2002. Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155 (1), 3–17.
  • Molaro, J. L., Byrne, S., Langer, S. A. 2015. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown. Journal of Geophysical Research: Planets 120 (2), 255–277.
  • Molaro, J. L., Walsh, K. J., Jawin, E. R. 2020a. In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface. Nature Communications 11 (1), 1–11.
  • Molaro, J. L., Hergenrother, C. W., Chesley, S. R., Walsh,K. J., Hanna, R. D., Haberle, C. W., Schwartz,S. R., Ballouz, R. L., Bottke, W. F., Campins,H. J., Lauretta, D. S. 2020b. Thermal fatigue as a driving mechanism for activity on AsteroidBennu. Journal of Geophysical Research: Planets 125 (8), e2019JE006325.
  • Murchie, S. L., Pieters, C. M. 1996. Spectral properties and rotational spectral heterogeneity of 433 Eros. Journal of Geophysical Research: Planets 101 (E1), 2201–2214.
  • Murphy, C. A. 2007. Interpreting FTG Gravity Data using Horizontal Tensor Components. Electromagnetic, Gravity and Magnetic International Workshop 2017, cp-166-00004.
  • Murphy, C., Dickinson, J. 2009. Exploring exploration play models with ftg gravity data. European Association of Geoscientists and Engineers, cp- 241-00020.
  • Nakamura, T., Noguchi, T., Tanaka, M. 2011. Itokawa Dust Particles: A direct link between s-type asteroids and ordinary chondrites. Science 333 (6046), 1113.
  • Nelson, J. B. 1988a. Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation. Geophysics 53 (7), 957–966.
  • Nelson, J. B. 1988b. Comparison of gradient analysis techniques for linear two- dimensional magnetic sources. Geophysics 53(8), 1088–1095.
  • Ostro, S. J., Campbell, D. B., Simpson, R. A. 1992. Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone. Journal of Geophysical Research 97 (E11), 18227.
  • Parker, R. L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International 31 (4), 447–455.
  • Pawlowski, B. 2012. Gravity gradiometry in resource exploration. The Leading Edge 17 (1), 51.
  • Pedersen, L. B. 1978. Wavenumber domain expressions for potential fields from arbitrary 2-, 21/2-, and 3-dimensional bodies. Geophysics 43 (3), 626–630.
  • Pedersen, L. B., Rasmussen, T. M. 1990. The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophysics 55 (12), 1558–1566.
  • Richardson, J. E., Melosh, H. J., Greenberg, R. 2004. Impact-induced seismic activity on asteroid 433 Eros: A surface modification process. Science 306 (5701), 1526–1529.
  • Robinson, M. S., Thomas, P. C., Veverka, J. 2002. The geology of 433 Eros. Meteoritics and Planetary Science 37 (12), 1651–1684.
  • Saito, J., Miyamoto, H., Nakamura, R. 2006. Detailed images of Asteroid 25143 Itokawa from Hayabusa. Science 312 (5778), 1341.
  • Sánchez, P., Scheeres, D. J. 2014. The strength of regolith and rubble pile asteroids. Meteoritics and Planetary Science 49 (5) 788–811.
  • Scheeres, D. J., Britt, D., Carry, B., Holsapple, K. A. 2015. Asteroid interiors and morphology. Asteroids IV, 745–766.
  • Scheeres, D. J., McMahon, J. W., French, A. S. 2019. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy 3 (4), 352–361.
  • Scheeres, D. J., French, A. S., Tricarico, P. 2020. Heterogeneous mass distribution of the rubble- pile asteroid (101955) Bennu. Science Advances 6 (41).
  • Si, H. 2015. TetGen, a delaunay-based quality tetrahedral mesh generator. Association for Computing Machinery Transactions on Mathematical Software 41(2).
  • Sorsa, L. I., Takala, M., Bambach, P., Deller, J., Vilenius, E., Agarwal, J., Carroll, K. A., Karatekin, Ö., Pursiainen, S. 2020. Tomographic inversion of gravity gradient field for a synthetic Itokawa model. Icarus 336, 113425.
  • Stokes, G. H., Evans, J. B., Viggh, H. E. M., Shelly, F. C., Pearce, E. C. 2000. Lincoln Near-Earth Asteroid Program (LINEAR). Icarus 148 (1), 21–28.
  • Tanbakouei, S., Trigo-Rodriguez, J. M., Sort, J., Michel, P., Blum, J., Nakamura, T., Williams, I. 2019. Mechanical properties of particles from the surface of asteroid 25143 Itokawa. Astronomy and Astrophysics 629, A119.
  • Thirumalai, K., Demou, S. G. 1970. Effect of reduced pressure on thermal-expansion behavior of rocks and its significance to thermal fragmentation. Journal of Applied Physics 41(13), 5147–5151.
  • Thomas, P. C., Joseph, J., Carcich, B. 2002. Eros: Shape, topography, and slope processes. Icarus 155 (1), 18–37.
  • Tontini, F. C., Cocchi, L., Carmisciano, C. 2009. Rapid 3-d forward model of potential fields with application to the palinuro seamount magnetic anomaly (Southern Tyrrhenian Sea, Italy). Journal of Geophysical Research: Solid Earth 114 (2), 2103.
  • Trombka, J. I., Squyres, S. W., Bruckner, J. 2000. The Elemental Composition of Asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray Spectrometer. Science 289 (5487), 2101–2105.
  • Veverka, J., Thomas, P. C., Bell, J. F. 1999. Imaging of Asteroid 433 Eros during NEARs Flyby Reconnaissance. Science 285 (5427), 562–564.
  • Veverka, J., Thomas, P. C., Robinson, M. 2001. Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith. Science 292 (5516), 484–488.
  • Walsh, K. J., Jawin, E. R., Ballouz, R. L. 2019. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience 12 (4), 242–246.Waragai, T. 1998. Effects of rock surface temperature on exfoliation, rock varnish, and lichens on a boulder in the Hunza Valley. Arctic and Alpine Research 30 (2), 184–192.
  • Werner, R. A., Scheeres, D. J. 1996. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celestial Mechanics and Dynamical Astronomy 65 (3), 313–344.
  • Whiteley, R. J., Tholen, D. J., Hergenrother, C. W. 2002. Lightcurve Analysis of four new monolithic fast- rotating asteroids. Icarus 157 (1), 139–154.
  • Wu, X. 1983. The computation of the spectrum of potential field due to 3-D arbitrary bodies with physical parameters varying with depth. Acta Geophysica Sinica 26 (2), 177–187.
  • Wu, L. 2016. Efficient modelling of gravity effects due to topographic masses using the Gauss-FFT method. Geophysical Journal International 205 (1), 160–178.
  • Wu, L. 2018. Comparison of 3-D Fourier forward algorithms for gravity modelling of prismatic bodies with polynomial density distribution. Geophysical Journal International 215 (3), 1865–1886.
  • Wu, L. 2019. Fourier-domain modeling of gravity effects caused by polyhedral bodies. Journal of Geodesy 93 (5), 635–653.
  • Wu, L. 2021a. Modified Parker’s method for gravitational forward and inverse modeling using general polyhedral models. Journal of Geophysical Research: Solid Earth 126 (10).
  • Wu, L. 2021b. Data and code for “Modified Parker’s method for gravitational forward and inverse modeling using general polyhedral models”.
  • Wu, L., Tian, G. 2014. High-precision fourier forward modeling of potential fields. Geophysics 79 (5), G59–G68.
  • Wu, L., Chen, L. 2016. Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrastVariable density contrast. Geophysics 81 (1), G13–G26.
  • Wu, L., Lin, Q. 2017. Improved Parker’s method for topographic models using Chebyshev series and low rank approximation. Geophysical Journal International 209 (2), 1296–1325.
  • Yano, H., Kubota, T., Miyamoto, H., Okada, T., Scheeres, D., Takagi, Y., Yoshida, K., Abe, M. 2006. Touchdown of the Hayabusa spacecraft at the muses sea on Itokawa. Science 312 (5778), 1350–1353.
  • Yeomans, D. K. 1995. Asteroid 433 Eros: the target body of the NEAR mission. Journal of the Astronautical Sciences 43 (4), 417–426.
There are 91 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İlkin Özsöz This is me 0000-0001-5907-4176

Early Pub Date April 28, 2023
Publication Date April 26, 2024
Published in Issue Year 2024

Cite

APA Özsöz, İ. (2024). Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT. Bulletin of the Mineral Research and Exploration, 173(173), 1-18. https://doi.org/10.19111/bulletinofmre.1251299
AMA Özsöz İ. Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT. Bull.Min.Res.Exp. April 2024;173(173):1-18. doi:10.19111/bulletinofmre.1251299
Chicago Özsöz, İlkin. “Modelling and Computation of Gravitational Attraction, Gradient Tensors, Rotational and Horizontal Invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT”. Bulletin of the Mineral Research and Exploration 173, no. 173 (April 2024): 1-18. https://doi.org/10.19111/bulletinofmre.1251299.
EndNote Özsöz İ (April 1, 2024) Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT. Bulletin of the Mineral Research and Exploration 173 173 1–18.
IEEE İ. Özsöz, “Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT”, Bull.Min.Res.Exp., vol. 173, no. 173, pp. 1–18, 2024, doi: 10.19111/bulletinofmre.1251299.
ISNAD Özsöz, İlkin. “Modelling and Computation of Gravitational Attraction, Gradient Tensors, Rotational and Horizontal Invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT”. Bulletin of the Mineral Research and Exploration 173/173 (April 2024), 1-18. https://doi.org/10.19111/bulletinofmre.1251299.
JAMA Özsöz İ. Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT. Bull.Min.Res.Exp. 2024;173:1–18.
MLA Özsöz, İlkin. “Modelling and Computation of Gravitational Attraction, Gradient Tensors, Rotational and Horizontal Invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT”. Bulletin of the Mineral Research and Exploration, vol. 173, no. 173, 2024, pp. 1-18, doi:10.19111/bulletinofmre.1251299.
Vancouver Özsöz İ. Modelling and computation of gravitational attraction, gradient tensors, rotational and horizontal invariants of Asteroid Bennu (101955), Itokawa (25143) and Eros (433) via 2D Non-Uniform FFT. Bull.Min.Res.Exp. 2024;173(173):1-18.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en