Research Article
BibTex RIS Cite
Year 2020, Volume: 161 Issue: 161, 151 - 156, 15.04.2020
https://doi.org/10.19111/bulletinofmre.524179

Abstract


References

  • Ai, M., Hu, Q., Li, J., Wang, M., Yuan, H., Wang, S. 2015. A robust photogrammetric processing method of low-altitude UAV images. Remote Sens 7:2302– 2333. doi: 10.3390/rs70302302
  • Darwin, N., Ahmad, A., Zainon, O. 2014. The potential of unmanned aerial vehicle for large scale mapping of coastal area. IOP Conf Ser Earth Environ Sci 18:. doi: 10.1088/1755-1315/18/1/012031.
  • Deng, Y., Wilson, J.P., Bauer, B.O. 2007. DEM resolution dependencies of terrain attributes across a landscape. Int J Geogr Inf Sci 21:187–213. doi: 10.1080/13658810600894364.
  • Höhle, J. 2017. Generating topographic map data from classification results. Remote Sens 9: doi: 10.3390/rs9030224.
  • Karakış, S. 2012. İnsansız Hava Aracı Yardımıyla Büyük Ölçekli Fotogrametrik Harita Üretim Olanaklarının Araştırılması. Harita Dergisi 147:13–20.
  • Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., De Lima, M.I., De Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., Toth, B. 2018a. Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens 10(4):641. doi: 10.3390/rs10040641.
  • Manfreda, S., Dvorak, P., Mullerova, J., Herban, S., Vuono, P., Arranz Justel, J.J., Perks, M. 2018b. Accuracy Assessment on Unmanned Aerial System Derived Digital Surface Models, Preprints 2018, doi: 10.20944/preprints201809.0579.v1.
  • Rosnell, T., Honkavaara, E. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12:453–480. doi: 10.3390/ s120100453.
  • Sørensen, L.Y., Jacobsen, L.T., Hansen, J.P. 2017. Low cost and flexible UAV deployment of sensors. Sensors (Switzerland) 17:1–13. doi: 10.3390/s17010154.
  • Swatantran, A., Tang, H., Barrett, T., DeCola, P., & Dubayah, R. 2016. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci Rep 6:1–12. doi: 10.1038/srep28277.
  • Teizer, J., Kim, C., Bosche, F. N., Haas, C. T., Caldas, C. 2005. Real-time 3{D} Modeling for Accelerated and Safer Construction using Emerging Technology. 539–543.
  • Watts, A.C., Ambrosia, V.G., Hinkley, E.A. 2012. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens 4:1671–1692. doi: 10.3390/rs4061671.

Precise monitoring of temporal topographic change detection via unmanned air vehicle

Year 2020, Volume: 161 Issue: 161, 151 - 156, 15.04.2020
https://doi.org/10.19111/bulletinofmre.524179

Abstract

Nowadays, fast developing space-borne and airborne remote sensing technologies became indispensable for land related engineering disciplines such as mapping, geology, environment, mining and forestry. The new technologies, provide more qualified and rapid achievable outcomes, are adopted permanently. The description of the topographic surface became easier by means of very high resolution (VHR), rapid achievable and accurate point clouds acquired by digital photogrammetry and airborne laser scanning (ALS). Optical unmanned air vehicle (UAV), one of the most actual photogrammetric techniques, is much in demand for varied purposes. UAVs provide high resolution data using the advantage of lower flight altitudes. In this study, a construction activity and its environmental influences in Bulent Ecevit University Central Campus were monitored by an optical hand-made UAV. In the application, the temporal change was detected by generating contour-lines, digital terrain models (DTMs) and differential DTMs (DiffDTM) of the topography. By DiffDTMs, temporal changes on the topography were visualized in color height scale where the contour-lines presents the change of morphological structure.

References

  • Ai, M., Hu, Q., Li, J., Wang, M., Yuan, H., Wang, S. 2015. A robust photogrammetric processing method of low-altitude UAV images. Remote Sens 7:2302– 2333. doi: 10.3390/rs70302302
  • Darwin, N., Ahmad, A., Zainon, O. 2014. The potential of unmanned aerial vehicle for large scale mapping of coastal area. IOP Conf Ser Earth Environ Sci 18:. doi: 10.1088/1755-1315/18/1/012031.
  • Deng, Y., Wilson, J.P., Bauer, B.O. 2007. DEM resolution dependencies of terrain attributes across a landscape. Int J Geogr Inf Sci 21:187–213. doi: 10.1080/13658810600894364.
  • Höhle, J. 2017. Generating topographic map data from classification results. Remote Sens 9: doi: 10.3390/rs9030224.
  • Karakış, S. 2012. İnsansız Hava Aracı Yardımıyla Büyük Ölçekli Fotogrametrik Harita Üretim Olanaklarının Araştırılması. Harita Dergisi 147:13–20.
  • Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., De Lima, M.I., De Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., Toth, B. 2018a. Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens 10(4):641. doi: 10.3390/rs10040641.
  • Manfreda, S., Dvorak, P., Mullerova, J., Herban, S., Vuono, P., Arranz Justel, J.J., Perks, M. 2018b. Accuracy Assessment on Unmanned Aerial System Derived Digital Surface Models, Preprints 2018, doi: 10.20944/preprints201809.0579.v1.
  • Rosnell, T., Honkavaara, E. 2012. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12:453–480. doi: 10.3390/ s120100453.
  • Sørensen, L.Y., Jacobsen, L.T., Hansen, J.P. 2017. Low cost and flexible UAV deployment of sensors. Sensors (Switzerland) 17:1–13. doi: 10.3390/s17010154.
  • Swatantran, A., Tang, H., Barrett, T., DeCola, P., & Dubayah, R. 2016. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci Rep 6:1–12. doi: 10.1038/srep28277.
  • Teizer, J., Kim, C., Bosche, F. N., Haas, C. T., Caldas, C. 2005. Real-time 3{D} Modeling for Accelerated and Safer Construction using Emerging Technology. 539–543.
  • Watts, A.C., Ambrosia, V.G., Hinkley, E.A. 2012. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens 4:1671–1692. doi: 10.3390/rs4061671.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serkan Karakış This is me 0000-0002-5765-7666

Umut Gunes Sefercik This is me 0000-0003-2403-5956

Turhan Bilir 0000-0003-0317-026X

Can Atalay This is me 0000-0002-6499-8071

Publication Date April 15, 2020
Published in Issue Year 2020 Volume: 161 Issue: 161

Cite

APA Karakış, S., Sefercik, U. G., Bilir, T., Atalay, C. (2020). Precise monitoring of temporal topographic change detection via unmanned air vehicle. Bulletin of the Mineral Research and Exploration, 161(161), 151-156. https://doi.org/10.19111/bulletinofmre.524179
AMA Karakış S, Sefercik UG, Bilir T, Atalay C. Precise monitoring of temporal topographic change detection via unmanned air vehicle. Bull.Min.Res.Exp. April 2020;161(161):151-156. doi:10.19111/bulletinofmre.524179
Chicago Karakış, Serkan, Umut Gunes Sefercik, Turhan Bilir, and Can Atalay. “Precise Monitoring of Temporal Topographic Change Detection via Unmanned Air Vehicle”. Bulletin of the Mineral Research and Exploration 161, no. 161 (April 2020): 151-56. https://doi.org/10.19111/bulletinofmre.524179.
EndNote Karakış S, Sefercik UG, Bilir T, Atalay C (April 1, 2020) Precise monitoring of temporal topographic change detection via unmanned air vehicle. Bulletin of the Mineral Research and Exploration 161 161 151–156.
IEEE S. Karakış, U. G. Sefercik, T. Bilir, and C. Atalay, “Precise monitoring of temporal topographic change detection via unmanned air vehicle”, Bull.Min.Res.Exp., vol. 161, no. 161, pp. 151–156, 2020, doi: 10.19111/bulletinofmre.524179.
ISNAD Karakış, Serkan et al. “Precise Monitoring of Temporal Topographic Change Detection via Unmanned Air Vehicle”. Bulletin of the Mineral Research and Exploration 161/161 (April 2020), 151-156. https://doi.org/10.19111/bulletinofmre.524179.
JAMA Karakış S, Sefercik UG, Bilir T, Atalay C. Precise monitoring of temporal topographic change detection via unmanned air vehicle. Bull.Min.Res.Exp. 2020;161:151–156.
MLA Karakış, Serkan et al. “Precise Monitoring of Temporal Topographic Change Detection via Unmanned Air Vehicle”. Bulletin of the Mineral Research and Exploration, vol. 161, no. 161, 2020, pp. 151-6, doi:10.19111/bulletinofmre.524179.
Vancouver Karakış S, Sefercik UG, Bilir T, Atalay C. Precise monitoring of temporal topographic change detection via unmanned air vehicle. Bull.Min.Res.Exp. 2020;161(161):151-6.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en