Review
BibTex RIS Cite

Review: Memristor: Device, Model and Applications

Year 2025, Volume: 6 Issue: 1, 1 - 12, 25.06.2025
https://doi.org/10.5281/zenodo.15719101

Abstract

This article introduces the memristor structure, which was discovered by Leon Chua in 1971 and is called the missing circuit element. Memristors are elements that are integrated with the latest technological developments for digital and analog circuit applications, especially neuromorphic neural networks, advanced information processing technologies, and continue to develop with many features. Metal-insulator-metal structures allow memristor structures with different properties to be produced using many metal oxides. Technological developments continue to improve and develop every day using these memristor structures. The article focuses on the working principle of the memristor structure and provides a better understanding of the structure. In addition, it explains how the experimental production of memristor structures is generally and how they work by considering the sandwich structure. Information is given about what the switching mechanisms are in memristors and how they work. Finally, it summarizes what memristor applications are today.

References

  • Neumann Jv. The principles of large-scale computing machines. Ann History Comput. 1988;10(4):243–256.
  • Wulf WA, McKee SA. Hitting the memory wall: implications of the obvious. SIGARCH Comput Archit News. 1995;23(1):20–24.
  • Backus J. Can programming be liberated from the von Neumann style, A functional style and its algebra of programs. Commun ACM. 1978;21 (8):613–641.
  • Horowitz M. Computing’s energy problem (and what we can do about it). 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC); San Francisco: IEEE. 2014; p. 10–14.
  • Ze W, Jianling Y, Chao J, Isaac A, Yantao Y. Vacancy-Induced Resistive Switching and Synaptic Behavior in flexible BST@Cf memristor crossbars. Ceramics International. 2020; 46(13), 21569-21577.
  • Leon C, Memristor-the missing circuit element. IEEE Transactions on circuit theory. 1971;18 (5), 507-519.
  • Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature, 2008; 453 (7191), 80-83.
  • Phil B, Maurice M, Andreas B, Peter Haring B, Bhaskar C, Vibration may Break the Conductive Filament in amorphous Germanium based Memristor. 2024 IEEE 6th International Conference On Ai Circuits And Systems, Aicas. 2024; Page, 408-412, DOI 10.1109/AICAS59952.2024.10595884.
  • Menke T, Dittmann R, Meuffels P, Szot K, Waser R. Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J. Appl. Phys. 2009; 106, 114507.
  • Wang Y, Wang W, Zhang C, et al. A digital–analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl Electron Mater. 2022;4(7):3525–3534. DOI:10. 1021/acsaelm.2c00495.
  • Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim J-S, Choi JS, Park BH. Repro ducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 2004, 85, 5655–5657
  • Dewei C, Xi L, Adnan Y, Chang Ming L, Feng D, Sean L. Growth and selef assembly of BaTiO3 nanocubes for resistive switching memory cells. Journal Of Solid State Chemistry, 2014; 214, 38–4.
  • Radwan AG, and Fouda ME. Memristor: Models, Types, and Applications in On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, Chapter 2, Cham: Springer, 2015; DOI: 10.1007/978-3-319-17491-4_2.
  • Jarosław D, Daman W, Tomasz K, Ewa M. Memristors: a Short Review on Fundamentals, Structures, Materials and Applications. Intl journal of electronıcs and telecommunıcatıons, 2020; vol. 66, no. 2, pp. 373-381.
  • Waser R, Aono M. Nanoionics-based resistive switching memo ries. Nat. Mater. 2007; 6, 833–840.
  • Asamitsu A, Tomioka Y, Kuwahara H, Tokura Y. Current switch ing of resistive states in magnetoresistive manganites. Nature 1997; 388, 50–52.
  • Kozicki M, Yun M, Hilt L, Singh A. Applications of program mable resistance changes in metal-doped chalcogenides. Electrochem. Soc: Pennington NJ USA, 1999; 298–309.
  • Beck A, Bednorz JG, Gerber Ch, Rossel C, Widmer D. Reproduc ible switching effect in thin oxide films for memory applica tions. Appl. Phys. Lett. 2000; 77, 139–141.
  • Hickmott T. Low-frequency negative resistance in thin anodic oxide films. J. App. Phys. 1962; 33, 2669–2682.
  • Dearnaley G, Stoneham A, Morgan D. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 1970; 33, 1129.
  • Beck A, Bednorz JG, Gerber Ch, Rossel C, Widmer D. Reproduc ible switching effect in thin oxide films for memory applica tions. Appl. Phys. Lett. 2000; 77, 139–141.
  • Choi B, Jeong DS, Kim SK, Rohde C, Choi S, Oh JH, Kim HJ, Hwang CS, Szot K, Waser R, Reichenberg B, Tiedke S. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 2005; 98, 033715.
  • Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim J-S, Choi JS, Park BH. Repro ducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 2004; 85, 5655–5657.
  • Szot K, Speier W, Bihlmayer G, Waser R. Switching the electri cal resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 2006; 5, 312–320.
  • Liu S, Wu N, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 2000; 76, 2749–2751.
  • Quintero M, Levy P, Leyva AG, Rozenberg MJ. Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 2007; 98, 116601.
  • Choi BJ, Yang JJ, Zhang MX, Norris KJ, Ohlberg DAA, Kobayashi NP, Medeiros-Ribeiro G, Williams RS. Nitride memristors. Appl. Phys. A 2012; 109, 1–4.
  • Ha SD, Ramanathan S. Adaptive oxide electronics: A review. J. Appl. Phys. 2011; 110, 071101.
  • Jeong DS, Schroeder H, Breuer U, Waser R. Characteristic electro forming behavior in Pt/TiO2 /Pt resistive switching cells depend ing on atmosphere. J. Appl. Phys. 2008; 104, 123716–123716-8.
  • Norpoth J, Mildner S, Scherff M, Hoffmann J, Jooss C. In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. Nanoscale. 2014; 6, 9852–9862.
  • Ge C. et al. Toward switchable photovoltaic effect via tailoring mobile oxygen vacancies in perovskite oxide films. ACS Appl. Mater. Interfaces. 2016; 8, 34590–34597.
  • Yao L, Inkinen S, van Dijken S. Direct observation of oxygen vacancy driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 2017; 8, 14544.
  • Valov I, Waser R, Jameson JR, Kozicki MN. Electrochemical metallization memories – fundamentals, applications, pros pects. Nanotechnology. 2011; 22, 254003.
  • Liu D, Cheng H, Zhu X, Wang G, Wang N. Analog memristors based on thickening/thinning of Ag nanofilaments in amor phous manganite thin films. ACS Appl. Mater. Interfaces. 2013; 5, 11258–11264.
  • Yang JJ, Strukov DB, Stewart DR. Memristive devices for com puting. Nat. Nanotechnol. 2013; 8, 13–24.
  • International Technology Roadmap for Semiconductors 2013, Available [Online] Available from: http://www.itrs.net/. Accessed on February 2025.
  • Wey TA, Jemison WD. Variable gain amplifier circuit using tita nium dioxide memristors. IET Circ. Dev. Syst. 2011; 5, 59–65.
  • Dongale TD, Shinde SS, Kamat RK, Rajpure KY. Nanostructured TiO2 thin film memristor using hydrothermal process, Journal of Alloys and Compounds. 2014; vol. 593, pp. 267–270, DOI: 10.1016/j.jallcom.2014.01.093.
  • Marani R, Gelao G, and Perri AG, A review on memristor applications, Electronic Devices Laboratory, Electrical and Information Engineering Department, Polytechnic University of Bari, Digital Library of Cornell University: arXiv:1506.06899, https://arvix.org, 2015.
  • Kirar V.P.S., “Memristor: The Missing Circuit Element and its Application”, International Scholarly and Scientific Research & Innovation. 2012; vol. 6, no. 12, pp. 1395- 1397. Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J, Rojas I, Neural networks: An overview of early research, current frameworks and new challenges, Neurocomputing, 2016; DOI: 10.1016/j.neucom.2016.06.014.
  • Radwan AG Fouda M, Memristor: Models, Types, and Applications in On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, Chapter 2, Cham: Springer, 2015; DOI: 10.1007/978-3-319-17491-4_2.
  • Mazumder P, Kang S, Waser R, Memristors: Devices, Models, and Applications. Proceedings of the IEEE, 2012; vol. 100, no. 6, pp. 1911 1919, DOI: 10.1109/JPROC.2012.2190812.
  • Marani R, Gelao G, Perri AG, A review on memristor applications. Electronic Devices Laboratory, Electrical and Information Engineering Department, Polytechnic University of Bari, Digital Library of Cornell University: arXiv:1506.06899, https://arvix.org, 2015.

Derleme: Memristör: Cihaz, Model ve Uygulamaları

Year 2025, Volume: 6 Issue: 1, 1 - 12, 25.06.2025
https://doi.org/10.5281/zenodo.15719101

Abstract

Bu makale 1971 yılında Leon Chua tarafından keşfedilen eksik devre elemanı olarak adlandırılan memristör yapısını tanıtmaktadır. Memristörler nöromorfik sinir ağları, ileri düzey bilgi işleme teknolojileri başta olmak üzere dijital ve analog devre uygulamaları için son teknolojik gelişmelere entegre olan ve sahip olduğu birçok özellik ile gelişmeye devam eden elemanlardır. Metal-yalıtka-metal yapılar birçok metal oksit kullanılarak farklı özelliklerde memristör yapıları üretilmesine izin vermektedir. Bu memristör yapıları kullanılarak teknolojik gelişmeler her gün iyileşerek gelişmeye devam etmektedir. Makalede memristör yapısının çalışma prensibi üzerinde durularak yapının daha iyi anlaşılmasını sağlamıştır. Ayrıca memristör yapılarının genel olarak deneysel üretiminin nasıl olduğunu ve nasıl çalıştığını sandviç yapısını ele alarak anlatmıştır. Memristörde anahtarlama mekanizmalarının neler olduğu ve nasıl çalıştığı konusunda bilgi verilmiştir. Son olarak günümüzde memristör uygulamalarının neler olduğu özet olarak anlatılmıştır.

Ethical Statement

Araştırma etik kurallara uygun yapılmıştır.

References

  • Neumann Jv. The principles of large-scale computing machines. Ann History Comput. 1988;10(4):243–256.
  • Wulf WA, McKee SA. Hitting the memory wall: implications of the obvious. SIGARCH Comput Archit News. 1995;23(1):20–24.
  • Backus J. Can programming be liberated from the von Neumann style, A functional style and its algebra of programs. Commun ACM. 1978;21 (8):613–641.
  • Horowitz M. Computing’s energy problem (and what we can do about it). 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC); San Francisco: IEEE. 2014; p. 10–14.
  • Ze W, Jianling Y, Chao J, Isaac A, Yantao Y. Vacancy-Induced Resistive Switching and Synaptic Behavior in flexible BST@Cf memristor crossbars. Ceramics International. 2020; 46(13), 21569-21577.
  • Leon C, Memristor-the missing circuit element. IEEE Transactions on circuit theory. 1971;18 (5), 507-519.
  • Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature, 2008; 453 (7191), 80-83.
  • Phil B, Maurice M, Andreas B, Peter Haring B, Bhaskar C, Vibration may Break the Conductive Filament in amorphous Germanium based Memristor. 2024 IEEE 6th International Conference On Ai Circuits And Systems, Aicas. 2024; Page, 408-412, DOI 10.1109/AICAS59952.2024.10595884.
  • Menke T, Dittmann R, Meuffels P, Szot K, Waser R. Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J. Appl. Phys. 2009; 106, 114507.
  • Wang Y, Wang W, Zhang C, et al. A digital–analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl Electron Mater. 2022;4(7):3525–3534. DOI:10. 1021/acsaelm.2c00495.
  • Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim J-S, Choi JS, Park BH. Repro ducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 2004, 85, 5655–5657
  • Dewei C, Xi L, Adnan Y, Chang Ming L, Feng D, Sean L. Growth and selef assembly of BaTiO3 nanocubes for resistive switching memory cells. Journal Of Solid State Chemistry, 2014; 214, 38–4.
  • Radwan AG, and Fouda ME. Memristor: Models, Types, and Applications in On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, Chapter 2, Cham: Springer, 2015; DOI: 10.1007/978-3-319-17491-4_2.
  • Jarosław D, Daman W, Tomasz K, Ewa M. Memristors: a Short Review on Fundamentals, Structures, Materials and Applications. Intl journal of electronıcs and telecommunıcatıons, 2020; vol. 66, no. 2, pp. 373-381.
  • Waser R, Aono M. Nanoionics-based resistive switching memo ries. Nat. Mater. 2007; 6, 833–840.
  • Asamitsu A, Tomioka Y, Kuwahara H, Tokura Y. Current switch ing of resistive states in magnetoresistive manganites. Nature 1997; 388, 50–52.
  • Kozicki M, Yun M, Hilt L, Singh A. Applications of program mable resistance changes in metal-doped chalcogenides. Electrochem. Soc: Pennington NJ USA, 1999; 298–309.
  • Beck A, Bednorz JG, Gerber Ch, Rossel C, Widmer D. Reproduc ible switching effect in thin oxide films for memory applica tions. Appl. Phys. Lett. 2000; 77, 139–141.
  • Hickmott T. Low-frequency negative resistance in thin anodic oxide films. J. App. Phys. 1962; 33, 2669–2682.
  • Dearnaley G, Stoneham A, Morgan D. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 1970; 33, 1129.
  • Beck A, Bednorz JG, Gerber Ch, Rossel C, Widmer D. Reproduc ible switching effect in thin oxide films for memory applica tions. Appl. Phys. Lett. 2000; 77, 139–141.
  • Choi B, Jeong DS, Kim SK, Rohde C, Choi S, Oh JH, Kim HJ, Hwang CS, Szot K, Waser R, Reichenberg B, Tiedke S. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 2005; 98, 033715.
  • Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim J-S, Choi JS, Park BH. Repro ducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 2004; 85, 5655–5657.
  • Szot K, Speier W, Bihlmayer G, Waser R. Switching the electri cal resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 2006; 5, 312–320.
  • Liu S, Wu N, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 2000; 76, 2749–2751.
  • Quintero M, Levy P, Leyva AG, Rozenberg MJ. Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 2007; 98, 116601.
  • Choi BJ, Yang JJ, Zhang MX, Norris KJ, Ohlberg DAA, Kobayashi NP, Medeiros-Ribeiro G, Williams RS. Nitride memristors. Appl. Phys. A 2012; 109, 1–4.
  • Ha SD, Ramanathan S. Adaptive oxide electronics: A review. J. Appl. Phys. 2011; 110, 071101.
  • Jeong DS, Schroeder H, Breuer U, Waser R. Characteristic electro forming behavior in Pt/TiO2 /Pt resistive switching cells depend ing on atmosphere. J. Appl. Phys. 2008; 104, 123716–123716-8.
  • Norpoth J, Mildner S, Scherff M, Hoffmann J, Jooss C. In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. Nanoscale. 2014; 6, 9852–9862.
  • Ge C. et al. Toward switchable photovoltaic effect via tailoring mobile oxygen vacancies in perovskite oxide films. ACS Appl. Mater. Interfaces. 2016; 8, 34590–34597.
  • Yao L, Inkinen S, van Dijken S. Direct observation of oxygen vacancy driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 2017; 8, 14544.
  • Valov I, Waser R, Jameson JR, Kozicki MN. Electrochemical metallization memories – fundamentals, applications, pros pects. Nanotechnology. 2011; 22, 254003.
  • Liu D, Cheng H, Zhu X, Wang G, Wang N. Analog memristors based on thickening/thinning of Ag nanofilaments in amor phous manganite thin films. ACS Appl. Mater. Interfaces. 2013; 5, 11258–11264.
  • Yang JJ, Strukov DB, Stewart DR. Memristive devices for com puting. Nat. Nanotechnol. 2013; 8, 13–24.
  • International Technology Roadmap for Semiconductors 2013, Available [Online] Available from: http://www.itrs.net/. Accessed on February 2025.
  • Wey TA, Jemison WD. Variable gain amplifier circuit using tita nium dioxide memristors. IET Circ. Dev. Syst. 2011; 5, 59–65.
  • Dongale TD, Shinde SS, Kamat RK, Rajpure KY. Nanostructured TiO2 thin film memristor using hydrothermal process, Journal of Alloys and Compounds. 2014; vol. 593, pp. 267–270, DOI: 10.1016/j.jallcom.2014.01.093.
  • Marani R, Gelao G, and Perri AG, A review on memristor applications, Electronic Devices Laboratory, Electrical and Information Engineering Department, Polytechnic University of Bari, Digital Library of Cornell University: arXiv:1506.06899, https://arvix.org, 2015.
  • Kirar V.P.S., “Memristor: The Missing Circuit Element and its Application”, International Scholarly and Scientific Research & Innovation. 2012; vol. 6, no. 12, pp. 1395- 1397. Prieto A, Prieto B, Ortigosa EM, Ros E, Pelayo F, Ortega J, Rojas I, Neural networks: An overview of early research, current frameworks and new challenges, Neurocomputing, 2016; DOI: 10.1016/j.neucom.2016.06.014.
  • Radwan AG Fouda M, Memristor: Models, Types, and Applications in On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, Chapter 2, Cham: Springer, 2015; DOI: 10.1007/978-3-319-17491-4_2.
  • Mazumder P, Kang S, Waser R, Memristors: Devices, Models, and Applications. Proceedings of the IEEE, 2012; vol. 100, no. 6, pp. 1911 1919, DOI: 10.1109/JPROC.2012.2190812.
  • Marani R, Gelao G, Perri AG, A review on memristor applications. Electronic Devices Laboratory, Electrical and Information Engineering Department, Polytechnic University of Bari, Digital Library of Cornell University: arXiv:1506.06899, https://arvix.org, 2015.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Microelectronics, Semiconductors
Journal Section Reviews
Authors

Ozlem Akin 0000-0002-8636-5021

Early Pub Date May 10, 2025
Publication Date June 25, 2025
Submission Date March 25, 2025
Acceptance Date April 10, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

Vancouver Akin O. Derleme: Memristör: Cihaz, Model ve Uygulamaları. BUTS. 2025;6(1):1-12.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.