Research Article
BibTex RIS Cite

Ağırlıklı Sade Bayes Sınıflandırıcısında Etkili Sınıflandırma İçin Ağırlıkların Optimizasyonu

Year 2025, Volume: 6 Issue: 1, 51 - 63, 25.06.2025
https://doi.org/10.5281/zenodo.15719600

Abstract

Ağırlıklı sade bayes sınıflandırıcısı, sade bayes algoritmasına dayanan verimli bir sınıflandırma algoritmasıdır. Ancak bu algoritmada ağırlıkların belirlenmesi önemli bir problemdir. Izgara tarama yöntemi kullanılarak yapılan aramalarda genellikle en uygun çözüme ulaşılamamakta ve algoritma oldukça yavaş çalışmaktadır. Ağırlıkları hızlı bir şekilde bulmak için hızlı ağırlıklı sade bayes sınıflandırıcısı kullanılsa da bu algoritmanın performansı sınırlıdır. Bu nedenle, ağırlıkların optimize edilmesi hem zaman açısından hem de yüksek performansa ulaşmak açısından büyük önem taşımaktadır. Bu çalışmada, ağırlıklı sade bayes sınıflandırıcısının ağırlıklarını optimize etmek için genetik algoritma ve parçacık sürü optimizasyonu yöntemleri kullanılmıştır. Genetik Algoritma tabanlı Ağırlıklı Naive Bayes (GAW-NB) ve Parçacık Sürü Optimizasyonu tabanlı Ağırlıklı Naive Bayes (PSOW-NB) yöntemlerinin performansları, beş farklı veri kümesi üzerinde 5 katlı çapraz doğrulama testi ile değerlendirilmiştir. Yapılan deneylerin sonuçları, hem hız hem de sınıflandırma performansı açısından anlamlı sonuçlar ortaya koymuştur.

References

  • Aggarwal CC, Yu PS. Data Mining Techniques for Associations, Clustering and Classification. In: Zhong N, Zhou L, editors. Methodol. Knowl. Discov. Data Min., Berlin, Heidelberg: Springer; 1999, p. 13–23. https://doi.org/10.1007/3-540-48912-6_4.
  • Ravinder B, Seeni SK, Prabhu VS, Asha P, Maniraj SP, Srinivasan C. Web Data Mining with Organized Contents Using Naive Bayes Algorithm. 2024 2nd Int. Conf. Comput. Commun. Control IC4, 2024, p. 1–6. https://doi.org/10.1109/IC457434.2024.10486403.
  • Jain J, Upadhyay SK, Nayak SK. Analyzing the Effectiveness of Machine Learning Algorithms in detecting Fake News. Comput. Commun. Intell., CRC Press; 2025.
  • Arrayyan AZ, Setiawan H, Putra KT. Naive Bayes for Diabetes Prediction: Developing a Classification Model for Risk Identification in Specific Populations. Semesta Tek 2024;27:28–36. https://doi.org/10.18196/st.v27i1.21008.
  • Karabatak M. A new classifier for breast cancer detection based on Naïve Bayesian. Measurement 2015;72:32–6. https://doi.org/10.1016/j.measurement.2015.04.028.
  • Aksoy G, Karabatak M. Performance Comparison of New Fast Weighted Naïve Bayes Classifier with Other Bayes Classifiers. 2019 7th Int. Symp. Digit. Forensics Secur. ISDFS, 2019, p. 1–5. https://doi.org/10.1109/ISDFS.2019.8757558.
  • Lin J, Yu J. Weighted Naive Bayes classification algorithm based on particle swarm optimization. 2011 IEEE 3rd Int. Conf. Commun. Softw. Netw., 2011, p. 444–7. https://doi.org/10.1109/ICCSN.2011.6014307.
  • Tian Z, Fong S, Tian Z, Fong S. Survey of Meta-Heuristic Algorithms for Deep Learning Training. Optim. Algorithms - Methods Appl., IntechOpen; 2016. https://doi.org/10.5772/63785.
  • Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification. IEEE Trans Cybern 2020;50:3840–54. https://doi.org/10.1109/TCYB.2020.2983860.
  • Połap D. An adaptive genetic algorithm as a supporting mechanism for microscopy image analysis in a cascade of convolution neural networks. Appl Soft Comput 2020;97:106824. https://doi.org/10.1016/j.asoc.2020.106824.
  • Cura T. A particle swarm optimization approach to clustering. Expert Syst Appl 2012;39:1582–8. https://doi.org/10.1016/j.eswa.2011.07.123.
  • Huang KY. A hybrid particle swarm optimization approach for clustering and classification of datasets. Knowl-Based Syst 2011;24:420–6. https://doi.org/10.1016/j.knosys.2010.12.003.
  • Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques 2007.
  • Dagdia, Zaineb Chelly, Mirchev, Miroslav. Optimization Problem - an overview 2020.
  • Alhijawi B, Awajan A. Genetic algorithms: theory, genetic operators, solutions, and applications. Evol Intell 2024;17:1245–56. https://doi.org/10.1007/s12065-023-00822-6.
  • Gen, Mitsuo, Cheng, Runwei. Foundations of Genetic Algorithms. Genet. Algorithms Eng. Optim., John Wiley & Sons, Ltd; 1999, p. 1–52. https://doi.org/10.1002/9780470172261.ch1.
  • Jain M, Saihjpal V, Singh N, Singh SB. An Overview of Variants and Advancements of PSO Algorithm. Appl Sci 2022;12:8392. https://doi.org/10.3390/app12178392.
  • Eberhart, Shi Y. Particle swarm optimization: developments, applications and resources. Proc. 2001 Congr. Evol. Comput. IEEE Cat No01TH8546, vol. 1, 2001, p. 81–6 vol. 1. https://doi.org/10.1109/CEC.2001.934374.
  • Home - UCI Machine Learning Repository n.d. https://archive.ics.uci.edu/ (accessed January 30, 2025).
  • Aha D. Tic-Tac-Toe Endgame 1991. https://doi.org/10.24432/C5688J.
  • Sharon Summers LW. Post-Operative Patient 1991. https://doi.org/10.24432/C5DG6Q.
  • Kim M-J, Han I. The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms. Expert Syst Appl 2003;25:637–46. https://doi.org/10.1016/S0957-4174(03)00102-7.
  • Elter M. Mammographic Mass 2007. https://doi.org/10.24432/C53K6Z.
  • De Jong K. Learning with genetic algorithms: An overview. Mach Learn 1988;3:121–38. https://doi.org/10.1007/BF00113894.

Weight Optimization of Weighted Naive Bayes Classifier for Efficient Classification

Year 2025, Volume: 6 Issue: 1, 51 - 63, 25.06.2025
https://doi.org/10.5281/zenodo.15719600

Abstract

The Weighted Naive Bayes classifier is an efficient classification algorithm based on the Naive Bayes Algorithm. However, the determination of weights in this algorithm is an important problem. By using the Grid search method, the optimum solution is not reached and the algorithm works too slowly. Fast Weighted Naïve Bayes classifier is used to find weights quickly, but the performance of this algorithm is limited. Therefore, optimizing the weights has a great importance in terms of both time and achieving high performance. In this study, Genetic Algorithm and Particle Swarm Optimization methods were used to optimize the weights of the Weighted Naive Bayes classifier. The performance of Genetic Algorithm based Weighted Naive Bayes (GAW-NB) and Particle Swarm Optimization based Weighted Naive Bayes (PSOW-NB) methods were examined on five different sets with 5-fold cross validation testing method. The results of the experiments showed significant results both in terms of speed and classification performance.

Thanks

This article was written as a part of master’s thesis titled “Optimization of the weights of Weighted Naive Bayesian Classifier” at Firat University. Thesis no: 527473.

References

  • Aggarwal CC, Yu PS. Data Mining Techniques for Associations, Clustering and Classification. In: Zhong N, Zhou L, editors. Methodol. Knowl. Discov. Data Min., Berlin, Heidelberg: Springer; 1999, p. 13–23. https://doi.org/10.1007/3-540-48912-6_4.
  • Ravinder B, Seeni SK, Prabhu VS, Asha P, Maniraj SP, Srinivasan C. Web Data Mining with Organized Contents Using Naive Bayes Algorithm. 2024 2nd Int. Conf. Comput. Commun. Control IC4, 2024, p. 1–6. https://doi.org/10.1109/IC457434.2024.10486403.
  • Jain J, Upadhyay SK, Nayak SK. Analyzing the Effectiveness of Machine Learning Algorithms in detecting Fake News. Comput. Commun. Intell., CRC Press; 2025.
  • Arrayyan AZ, Setiawan H, Putra KT. Naive Bayes for Diabetes Prediction: Developing a Classification Model for Risk Identification in Specific Populations. Semesta Tek 2024;27:28–36. https://doi.org/10.18196/st.v27i1.21008.
  • Karabatak M. A new classifier for breast cancer detection based on Naïve Bayesian. Measurement 2015;72:32–6. https://doi.org/10.1016/j.measurement.2015.04.028.
  • Aksoy G, Karabatak M. Performance Comparison of New Fast Weighted Naïve Bayes Classifier with Other Bayes Classifiers. 2019 7th Int. Symp. Digit. Forensics Secur. ISDFS, 2019, p. 1–5. https://doi.org/10.1109/ISDFS.2019.8757558.
  • Lin J, Yu J. Weighted Naive Bayes classification algorithm based on particle swarm optimization. 2011 IEEE 3rd Int. Conf. Commun. Softw. Netw., 2011, p. 444–7. https://doi.org/10.1109/ICCSN.2011.6014307.
  • Tian Z, Fong S, Tian Z, Fong S. Survey of Meta-Heuristic Algorithms for Deep Learning Training. Optim. Algorithms - Methods Appl., IntechOpen; 2016. https://doi.org/10.5772/63785.
  • Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification. IEEE Trans Cybern 2020;50:3840–54. https://doi.org/10.1109/TCYB.2020.2983860.
  • Połap D. An adaptive genetic algorithm as a supporting mechanism for microscopy image analysis in a cascade of convolution neural networks. Appl Soft Comput 2020;97:106824. https://doi.org/10.1016/j.asoc.2020.106824.
  • Cura T. A particle swarm optimization approach to clustering. Expert Syst Appl 2012;39:1582–8. https://doi.org/10.1016/j.eswa.2011.07.123.
  • Huang KY. A hybrid particle swarm optimization approach for clustering and classification of datasets. Knowl-Based Syst 2011;24:420–6. https://doi.org/10.1016/j.knosys.2010.12.003.
  • Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques 2007.
  • Dagdia, Zaineb Chelly, Mirchev, Miroslav. Optimization Problem - an overview 2020.
  • Alhijawi B, Awajan A. Genetic algorithms: theory, genetic operators, solutions, and applications. Evol Intell 2024;17:1245–56. https://doi.org/10.1007/s12065-023-00822-6.
  • Gen, Mitsuo, Cheng, Runwei. Foundations of Genetic Algorithms. Genet. Algorithms Eng. Optim., John Wiley & Sons, Ltd; 1999, p. 1–52. https://doi.org/10.1002/9780470172261.ch1.
  • Jain M, Saihjpal V, Singh N, Singh SB. An Overview of Variants and Advancements of PSO Algorithm. Appl Sci 2022;12:8392. https://doi.org/10.3390/app12178392.
  • Eberhart, Shi Y. Particle swarm optimization: developments, applications and resources. Proc. 2001 Congr. Evol. Comput. IEEE Cat No01TH8546, vol. 1, 2001, p. 81–6 vol. 1. https://doi.org/10.1109/CEC.2001.934374.
  • Home - UCI Machine Learning Repository n.d. https://archive.ics.uci.edu/ (accessed January 30, 2025).
  • Aha D. Tic-Tac-Toe Endgame 1991. https://doi.org/10.24432/C5688J.
  • Sharon Summers LW. Post-Operative Patient 1991. https://doi.org/10.24432/C5DG6Q.
  • Kim M-J, Han I. The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms. Expert Syst Appl 2003;25:637–46. https://doi.org/10.1016/S0957-4174(03)00102-7.
  • Elter M. Mammographic Mass 2007. https://doi.org/10.24432/C53K6Z.
  • De Jong K. Learning with genetic algorithms: An overview. Mach Learn 1988;3:121–38. https://doi.org/10.1007/BF00113894.
There are 24 citations in total.

Details

Primary Language English
Subjects Query Processing and Optimisation, Data Mining and Knowledge Discovery
Journal Section Research Articles
Authors

Gamzepelin Aksoy 0000-0002-5328-2983

Murat Karabatak 0000-0002-6719-7421

Publication Date June 25, 2025
Submission Date June 2, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

Vancouver Aksoy G, Karabatak M. Weight Optimization of Weighted Naive Bayes Classifier for Efficient Classification. BUTS. 2025;6(1):51-63.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.