Research Article
BibTex RIS Cite

Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses

Year 2023, , 115 - 127, 17.09.2023
https://doi.org/10.33434/cams.1257750

Abstract

This paper deals with the existence, uniqueness, and Ulam-stability outcomes for $\Xi$-Hilfer fractional fuzzy differential equations with impulse. Further, by using the techniques of nonlinear functional analysis, we study the Ulam-Hyers-Rassias stability.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] M. Benchohra, J.J. Nieto, A. Ouahab, Fuzzy solutions for impulsive differential equations, Commun. Appl. Anal., 11(2007), 379-394.
  • [2] M. Benchohra, J. Henderson, S.L. Ntouyas, Impulsive Differential Equations and Inclusions, New York, Hindawi Publishing Corporation, 2(2006).
  • [3] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solutions for impulsive fractional differential equations, Commun. Nonlinear. Sci. Numer. Simul., 17(7)(2012), 3050-3060.
  • [4] T.L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64(2012), 3414-3424.
  • [5] N.V. Hoa, D. O’Regan, A remark on y-Hilfer fractional differential equations with non-instantaneous impulses, Math. Methods. Appl. Sci., 43(2020), 3354-3368.
  • [6] N.V. Hoa, T.V. An, Fuzzy differential equations with Riemann-Liouville generalized fractional integrable impulses, Fuzzy Sets Syst., 2021.
  • [7] D. Luo, Z. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca., 70(5)(2020), 1231-1248.
  • [8] J.V.D.C. Sousa, K.D. Kucche, E.C. de Oliveira, Stability of y-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88(2019), 73-80.
  • [9] J.V.D.C. Sousa, D.D.S. Oliveira, E.C. de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integro-differential equations, Math. Methods. Appl. Sci., 42(2019), 1249-1261.
  • [10] K.M. Furati, M.D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(6)(2012), 1616-1626.
  • [11] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore, World scientific, 2000.
  • [12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
  • [13] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [14] J.V.D.C. Sousa, E.C. de Oliveira, On the y-Hilfer fractional derivative, Commun. Nonlinear. Sci. Numer. Simul., 60(2018), 72-91.
  • [15] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy sets syst., 230(2013), 119-141.
  • [16] V. Lakshikantham, R.N. Mohapatra, Theory of fuzzy differential equations and applications, London, CRC Press, 2003.
  • [17] L. Sajedi, N. Eghbali, H. Aydi, Impulsive coupled system of fractional differential equations with Caputo-Katugampola fuzzy fractional derivative, Hindawi. J. Math., 13(2021).
  • [18] X. Chen, H. Gu, X. Wang, Existence and uniqueness for fuzzy differential equation with Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020(2020), 241.
  • [19] N.V. Hoa, H. Vu, T.M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Sets Syst., 375(2019), 70-99.
  • [20] N.V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear. Sci. Numer. Simul., 22(1-3)(2015), 1134-1157.
  • [21] D.F. Luo, T. Abdeljawad, Z.G. Luo, Ulam-Hyers stability results for a novel nonlinear nabla caputo fractional variable order difference system, Turk. J. Math., 45(1)(2021), 456-70.
  • [22] D. Luo, K. Shah, Z. Luo, On the novel Ulam-Hyers stability for a class of nonlinear y-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16(5)(2019), 112.
  • [23] S. Rashid, F. Jarad, K.M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfergeneralized proportional fractional derivative, AIMS Math., 6(2021), 10920-10946.
  • [24] H. Vu, J.M. Rassias, N.V. Hoa, Ulam-Hyers-Rassias stability for fuzzy fractional integral equations, Iran. J. Fuzzy syst., 17(2020), 17-27.
  • [25] X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional differential equation with time-delays, Chaos. Solitons. Fractals., 156(2022), 111822.
Year 2023, , 115 - 127, 17.09.2023
https://doi.org/10.33434/cams.1257750

Abstract

Project Number

-

References

  • [1] M. Benchohra, J.J. Nieto, A. Ouahab, Fuzzy solutions for impulsive differential equations, Commun. Appl. Anal., 11(2007), 379-394.
  • [2] M. Benchohra, J. Henderson, S.L. Ntouyas, Impulsive Differential Equations and Inclusions, New York, Hindawi Publishing Corporation, 2(2006).
  • [3] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solutions for impulsive fractional differential equations, Commun. Nonlinear. Sci. Numer. Simul., 17(7)(2012), 3050-3060.
  • [4] T.L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64(2012), 3414-3424.
  • [5] N.V. Hoa, D. O’Regan, A remark on y-Hilfer fractional differential equations with non-instantaneous impulses, Math. Methods. Appl. Sci., 43(2020), 3354-3368.
  • [6] N.V. Hoa, T.V. An, Fuzzy differential equations with Riemann-Liouville generalized fractional integrable impulses, Fuzzy Sets Syst., 2021.
  • [7] D. Luo, Z. Luo, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math. Slovaca., 70(5)(2020), 1231-1248.
  • [8] J.V.D.C. Sousa, K.D. Kucche, E.C. de Oliveira, Stability of y-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88(2019), 73-80.
  • [9] J.V.D.C. Sousa, D.D.S. Oliveira, E.C. de Oliveira, On the existence and stability for non-instantaneous impulsive fractional integro-differential equations, Math. Methods. Appl. Sci., 42(2019), 1249-1261.
  • [10] K.M. Furati, M.D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(6)(2012), 1616-1626.
  • [11] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore, World scientific, 2000.
  • [12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
  • [13] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [14] J.V.D.C. Sousa, E.C. de Oliveira, On the y-Hilfer fractional derivative, Commun. Nonlinear. Sci. Numer. Simul., 60(2018), 72-91.
  • [15] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy sets syst., 230(2013), 119-141.
  • [16] V. Lakshikantham, R.N. Mohapatra, Theory of fuzzy differential equations and applications, London, CRC Press, 2003.
  • [17] L. Sajedi, N. Eghbali, H. Aydi, Impulsive coupled system of fractional differential equations with Caputo-Katugampola fuzzy fractional derivative, Hindawi. J. Math., 13(2021).
  • [18] X. Chen, H. Gu, X. Wang, Existence and uniqueness for fuzzy differential equation with Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020(2020), 241.
  • [19] N.V. Hoa, H. Vu, T.M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Sets Syst., 375(2019), 70-99.
  • [20] N.V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear. Sci. Numer. Simul., 22(1-3)(2015), 1134-1157.
  • [21] D.F. Luo, T. Abdeljawad, Z.G. Luo, Ulam-Hyers stability results for a novel nonlinear nabla caputo fractional variable order difference system, Turk. J. Math., 45(1)(2021), 456-70.
  • [22] D. Luo, K. Shah, Z. Luo, On the novel Ulam-Hyers stability for a class of nonlinear y-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16(5)(2019), 112.
  • [23] S. Rashid, F. Jarad, K.M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfergeneralized proportional fractional derivative, AIMS Math., 6(2021), 10920-10946.
  • [24] H. Vu, J.M. Rassias, N.V. Hoa, Ulam-Hyers-Rassias stability for fuzzy fractional integral equations, Iran. J. Fuzzy syst., 17(2020), 17-27.
  • [25] X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional differential equation with time-delays, Chaos. Solitons. Fractals., 156(2022), 111822.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ravichandran Vıvek This is me 0000-0002-1451-0875

Kangarajan K. 0000-0001-5556-2658

Dvivek Vivek 0000-0003-0951-8060

Elsayed Elsayed 0000-0003-0894-8472

Project Number -
Early Pub Date September 12, 2023
Publication Date September 17, 2023
Submission Date February 28, 2023
Acceptance Date July 25, 2023
Published in Issue Year 2023

Cite

APA Vıvek, R., K., K., Vivek, D., Elsayed, E. (2023). Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences, 6(3), 115-127. https://doi.org/10.33434/cams.1257750
AMA Vıvek R, K. K, Vivek D, Elsayed E. Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences. September 2023;6(3):115-127. doi:10.33434/cams.1257750
Chicago Vıvek, Ravichandran, Kangarajan K., Dvivek Vivek, and Elsayed Elsayed. “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations With Impulses”. Communications in Advanced Mathematical Sciences 6, no. 3 (September 2023): 115-27. https://doi.org/10.33434/cams.1257750.
EndNote Vıvek R, K. K, Vivek D, Elsayed E (September 1, 2023) Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences 6 3 115–127.
IEEE R. Vıvek, K. K., D. Vivek, and E. Elsayed, “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses”, Communications in Advanced Mathematical Sciences, vol. 6, no. 3, pp. 115–127, 2023, doi: 10.33434/cams.1257750.
ISNAD Vıvek, Ravichandran et al. “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations With Impulses”. Communications in Advanced Mathematical Sciences 6/3 (September 2023), 115-127. https://doi.org/10.33434/cams.1257750.
JAMA Vıvek R, K. K, Vivek D, Elsayed E. Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences. 2023;6:115–127.
MLA Vıvek, Ravichandran et al. “Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations With Impulses”. Communications in Advanced Mathematical Sciences, vol. 6, no. 3, 2023, pp. 115-27, doi:10.33434/cams.1257750.
Vancouver Vıvek R, K. K, Vivek D, Elsayed E. Dynamics and Stability of $\Xi$-Hilfer Fractional Fuzzy Differential Equations with Impulses. Communications in Advanced Mathematical Sciences. 2023;6(3):115-27.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..