Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 70 - 85, 01.07.2025
https://doi.org/10.33434/cams.1581561

Abstract

References

  • [1] D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 8 edition, Aug. 2019.
  • [2] Y. Ching-Ho, A. Muhammad, C. Chia-Hao, S. R. A. Khan, A. Liaquat, J. Chi-Hyuck, A variable sampling plan based on the coefficient of variation for lots resubmission, Sci. Rep., 13 (2023), 1-18, Article ID 22986. http://dx.doi.org/10.1038/s41598-023-50498-2
  • [3] R. Sankle, J. Singh, Single sampling plans for variables indexed by aql and aoql with measurement error, J. Mod. Appl. Stat. Methods, 11(2) (2012), 396-406. http://dx.doi.org/10.22237/jmasm/1351743060
  • [4] Y. Tong, Q. Chen, Sampling inspection by variables for coefficient of variation, Theor. Appl. Probab., 3 (1991), 315-327.
  • [5] J. Wang, H. Xiao, A sampling test with varied coefficients as the quality indices, The Journal of Quantitative and Technical Economics, 2001(3) (2001), 117-119.
  • [6] H. Melgaard, P. Thyregod, Acceptance sampling by variables under measurement uncertainty, Physica-Verlag HD, 6 (2001), 47-57. http://dx.doi.org/10.1007/978-3-642-57590-7 4
  • [7] P. Wilrich, Variables Sampling Under Measurement Error, Wiley, Sept. 2014. http://dx.doi.org/10.1002/9781118445112.stat04214
  • [8] Y. Aijun, L. Sanyang, D. Xiaojuan, Variables two stage sampling plans based on the coefficient of variation, J. Adv. Mech. Des. Syst. Manuf., 10(1) (2016), 1-12. http://dx.doi.org/10.1299/JAMDSM.2016JAMDSM0002
  • [9] K. Govindaraju, V. Soundararajan, Selection of single sampling plans for variables matching the mil-std-105 scheme, J. Qual. Technol., 18(4) (1986), 234-238. http://dx.doi.org/10.1080/00224065.1986.11979017
  • [10] C.W. Wu, W. Pearn, A variables sampling plan based on cpmk for product acceptance determination, Eur. J. Oper. Res., 184(2) (2008), 549-560. http://dx.doi.org/10.1016/j.ejor.2006.11.032
  • [11] J. R. Singh, A. Sanvalia, Single sampling plan for variable indexed by aql and aoql with known coefficient of variation, Int. J. Comput. Sci. Eng., 5(10) (2017), 20-25. http://dx.doi.org/10.26438/ijcse/v5i10.2025
  • [12] S. W. Liu, S. W. Lin, C.W. Wu, A resubmitted sampling scheme by variables inspection for controlling lot fraction nonconforming, Int. J. Prod. Res., 52(12) (2014), 3744-3754. http://dx.doi.org/10.1080/00207543.2014.886028
  • [13] M. H. Lee, M. B. C. Khoo, X. Chew, P. H. H. Then, Effect of measurement errors on the performance of coefficient of variation chart with short production runs, IEEE Access, 8 (2020), 72216-72228. http://dx.doi.org/10.1109/ACCESS.2020.2985410
  • [14] G. Srinivasa Rao, M. Aslam, R. A. K. Sherwani, M. A. Shehzad, C.H. Jun, Generalized multiple dependent state sampling plans for coefficient of variation, Commun. Stat. Theor. M., 51(20) (2022), 6990-7005. http://dx.doi.org/10.1080/03610926.2020.1869989
  • [15] G. S. Rao, M. Aslam, F. S. Alamri, C.H. Jun, Comparing the efficacy of coefficient of variation control charts using generalized multiple dependent state sampling with various run-rule control charts, Sci. Rep., 14 (2024), 1-17, Article ID 2726. http://dx.doi.org/10.1038/s41598-024-53296-6
  • [16] U. Shahzad, I. Ahmad, A. V. Garc´ıa-Luengo, T. Zaman, N. H. Al-Noor, A. Kumar, Estimation of coefficient of variation using calibrated estimators in double stratified random sampling, Mathematics, 11(1) (2023), Article ID 252, 17 pages. http://dx.doi.org/10.3390/math11010252

Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error

Year 2025, Volume: 8 Issue: 2, 70 - 85, 01.07.2025
https://doi.org/10.33434/cams.1581561

Abstract

This study investigates the impact of measurement error on variable sampling schemes indexed by Acceptance Quality Limit (AQL) and Average Outgoing Quality Level (AOQL) while considering a known Coefficient of Variation (CV). We present procedures and tables for selecting appropriate variable sampling plans based on specified AQL and AOQL values. In our approach, rejected lots undergo 100% inspection to replace non-conforming items. The operating characteristic (OC) function is analyzed for various CV values, highlighting how measurement error influences the classification of product quality. Our findings emphasize the importance of understanding the relationship between measurement error, CV, AQL, and AOQL in quality control processes, ultimately aiming to enhance product quality and optimize inspection resources.

References

  • [1] D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 8 edition, Aug. 2019.
  • [2] Y. Ching-Ho, A. Muhammad, C. Chia-Hao, S. R. A. Khan, A. Liaquat, J. Chi-Hyuck, A variable sampling plan based on the coefficient of variation for lots resubmission, Sci. Rep., 13 (2023), 1-18, Article ID 22986. http://dx.doi.org/10.1038/s41598-023-50498-2
  • [3] R. Sankle, J. Singh, Single sampling plans for variables indexed by aql and aoql with measurement error, J. Mod. Appl. Stat. Methods, 11(2) (2012), 396-406. http://dx.doi.org/10.22237/jmasm/1351743060
  • [4] Y. Tong, Q. Chen, Sampling inspection by variables for coefficient of variation, Theor. Appl. Probab., 3 (1991), 315-327.
  • [5] J. Wang, H. Xiao, A sampling test with varied coefficients as the quality indices, The Journal of Quantitative and Technical Economics, 2001(3) (2001), 117-119.
  • [6] H. Melgaard, P. Thyregod, Acceptance sampling by variables under measurement uncertainty, Physica-Verlag HD, 6 (2001), 47-57. http://dx.doi.org/10.1007/978-3-642-57590-7 4
  • [7] P. Wilrich, Variables Sampling Under Measurement Error, Wiley, Sept. 2014. http://dx.doi.org/10.1002/9781118445112.stat04214
  • [8] Y. Aijun, L. Sanyang, D. Xiaojuan, Variables two stage sampling plans based on the coefficient of variation, J. Adv. Mech. Des. Syst. Manuf., 10(1) (2016), 1-12. http://dx.doi.org/10.1299/JAMDSM.2016JAMDSM0002
  • [9] K. Govindaraju, V. Soundararajan, Selection of single sampling plans for variables matching the mil-std-105 scheme, J. Qual. Technol., 18(4) (1986), 234-238. http://dx.doi.org/10.1080/00224065.1986.11979017
  • [10] C.W. Wu, W. Pearn, A variables sampling plan based on cpmk for product acceptance determination, Eur. J. Oper. Res., 184(2) (2008), 549-560. http://dx.doi.org/10.1016/j.ejor.2006.11.032
  • [11] J. R. Singh, A. Sanvalia, Single sampling plan for variable indexed by aql and aoql with known coefficient of variation, Int. J. Comput. Sci. Eng., 5(10) (2017), 20-25. http://dx.doi.org/10.26438/ijcse/v5i10.2025
  • [12] S. W. Liu, S. W. Lin, C.W. Wu, A resubmitted sampling scheme by variables inspection for controlling lot fraction nonconforming, Int. J. Prod. Res., 52(12) (2014), 3744-3754. http://dx.doi.org/10.1080/00207543.2014.886028
  • [13] M. H. Lee, M. B. C. Khoo, X. Chew, P. H. H. Then, Effect of measurement errors on the performance of coefficient of variation chart with short production runs, IEEE Access, 8 (2020), 72216-72228. http://dx.doi.org/10.1109/ACCESS.2020.2985410
  • [14] G. Srinivasa Rao, M. Aslam, R. A. K. Sherwani, M. A. Shehzad, C.H. Jun, Generalized multiple dependent state sampling plans for coefficient of variation, Commun. Stat. Theor. M., 51(20) (2022), 6990-7005. http://dx.doi.org/10.1080/03610926.2020.1869989
  • [15] G. S. Rao, M. Aslam, F. S. Alamri, C.H. Jun, Comparing the efficacy of coefficient of variation control charts using generalized multiple dependent state sampling with various run-rule control charts, Sci. Rep., 14 (2024), 1-17, Article ID 2726. http://dx.doi.org/10.1038/s41598-024-53296-6
  • [16] U. Shahzad, I. Ahmad, A. V. Garc´ıa-Luengo, T. Zaman, N. H. Al-Noor, A. Kumar, Estimation of coefficient of variation using calibrated estimators in double stratified random sampling, Mathematics, 11(1) (2023), Article ID 252, 17 pages. http://dx.doi.org/10.3390/math11010252
There are 16 citations in total.

Details

Primary Language English
Subjects Applied Statistics
Journal Section Research Article
Authors

Uttama Mishra 0000-0001-7959-7986

Submission Date November 8, 2024
Acceptance Date April 29, 2025
Early Pub Date June 14, 2025
Publication Date July 1, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Mishra, U. (2025). Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error. Communications in Advanced Mathematical Sciences, 8(2), 70-85. https://doi.org/10.33434/cams.1581561
AMA Mishra U. Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error. Communications in Advanced Mathematical Sciences. July 2025;8(2):70-85. doi:10.33434/cams.1581561
Chicago Mishra, Uttama. “Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error”. Communications in Advanced Mathematical Sciences 8, no. 2 (July 2025): 70-85. https://doi.org/10.33434/cams.1581561.
EndNote Mishra U (July 1, 2025) Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error. Communications in Advanced Mathematical Sciences 8 2 70–85.
IEEE U. Mishra, “Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error”, Communications in Advanced Mathematical Sciences, vol. 8, no. 2, pp. 70–85, 2025, doi: 10.33434/cams.1581561.
ISNAD Mishra, Uttama. “Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error”. Communications in Advanced Mathematical Sciences 8/2 (July2025), 70-85. https://doi.org/10.33434/cams.1581561.
JAMA Mishra U. Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error. Communications in Advanced Mathematical Sciences. 2025;8:70–85.
MLA Mishra, Uttama. “Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error”. Communications in Advanced Mathematical Sciences, vol. 8, no. 2, 2025, pp. 70-85, doi:10.33434/cams.1581561.
Vancouver Mishra U. Effect of Coefficient of Variation on Variable Sampling Scheme Indexed in AQL and AOQL under Measurement Error. Communications in Advanced Mathematical Sciences. 2025;8(2):70-85.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..