Research Article
BibTex RIS Cite
Year 2020, , 13 - 23, 25.03.2020
https://doi.org/10.33434/cams.631112

Abstract

References

  • [1] E. Albrecht, T. L. Miller, M. M. Neumann, Spectral properties of generalized Ces`aro operators on Hardy and weighted Bergman spaces. Arch. Math. (Basel), 85 (2005), 446–459.
  • [2] J. B. Garnett, Bounded Analytic Functions. Graduate Texts in Mathematics, Revised First Edition, Springer, Berlin, 2010.
  • [3] P. Duren, Theory of Hp spaces. Academic Press, New York, 1970.
  • [4] M. M. Peloso, Classical spaces of Holomorphic functions. Technical report, Universit di Milano, 2014.
  • [5] D. Bekolle, A.Bonimi. G. Garrigos, C. Nana, M. Peloso, F. Ricci, Lecture notes on Bergman projections in tube domais over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004). http://webs.um.es/gustavo.garrigos/papers/workshop5.pdf
  • [6] P. Duren, A. Schuster, Bergman spaces. Mathematical Surveys and Monographs 100, Amer. Math. Soc., Providence, RI, 2004.
  • [7] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces. Springer Verlag, New York, Inc., 2000.
  • [8] K. Zhu, Operator theory in function spaces. Mathematical Surveys and Monographs 138, Amer. Math. Soc., Providence, 2007.
  • [9] J. O. Bonyo, Groups of isometries associated with automorphisms of the half plane. Ph.D. dissertation, Mississippi State University, USA, 2015.
  • [10] S. Ballamoole, J. O. Bonyo, T. L. Miller, V. G. Miller, Ces`aro operators on the Hardy and Bergman spaces of the half plane. Complex Anal. Oper. Theory 10 (2016), 187–203. [11] K. Hoffman, Banach spaces of analytic functions. Prentice - Hall, Inc., Englewood Cliffs, N.J., 1962.

Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane

Year 2020, , 13 - 23, 25.03.2020
https://doi.org/10.33434/cams.631112

Abstract

Using invertible isometries between Hardy and Bergman spaces of the unit disk $\D$ and the corresponding spaces of the upper half plane $\uP$, we determine explicitly the reproducing kernels for the Hardy and Bergman spaces of $\uP$. As a consequence, we obtain the duality relations for the reflexive Hardy and Bergman spaces of the half plane $\uP$.

References

  • [1] E. Albrecht, T. L. Miller, M. M. Neumann, Spectral properties of generalized Ces`aro operators on Hardy and weighted Bergman spaces. Arch. Math. (Basel), 85 (2005), 446–459.
  • [2] J. B. Garnett, Bounded Analytic Functions. Graduate Texts in Mathematics, Revised First Edition, Springer, Berlin, 2010.
  • [3] P. Duren, Theory of Hp spaces. Academic Press, New York, 1970.
  • [4] M. M. Peloso, Classical spaces of Holomorphic functions. Technical report, Universit di Milano, 2014.
  • [5] D. Bekolle, A.Bonimi. G. Garrigos, C. Nana, M. Peloso, F. Ricci, Lecture notes on Bergman projections in tube domais over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004). http://webs.um.es/gustavo.garrigos/papers/workshop5.pdf
  • [6] P. Duren, A. Schuster, Bergman spaces. Mathematical Surveys and Monographs 100, Amer. Math. Soc., Providence, RI, 2004.
  • [7] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces. Springer Verlag, New York, Inc., 2000.
  • [8] K. Zhu, Operator theory in function spaces. Mathematical Surveys and Monographs 138, Amer. Math. Soc., Providence, 2007.
  • [9] J. O. Bonyo, Groups of isometries associated with automorphisms of the half plane. Ph.D. dissertation, Mississippi State University, USA, 2015.
  • [10] S. Ballamoole, J. O. Bonyo, T. L. Miller, V. G. Miller, Ces`aro operators on the Hardy and Bergman spaces of the half plane. Complex Anal. Oper. Theory 10 (2016), 187–203. [11] K. Hoffman, Banach spaces of analytic functions. Prentice - Hall, Inc., Englewood Cliffs, N.J., 1962.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Job Bonyo 0000-0002-6442-4211

Publication Date March 25, 2020
Submission Date October 8, 2019
Acceptance Date February 13, 2020
Published in Issue Year 2020

Cite

APA Bonyo, J. (2020). Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane. Communications in Advanced Mathematical Sciences, 3(1), 13-23. https://doi.org/10.33434/cams.631112
AMA Bonyo J. Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane. Communications in Advanced Mathematical Sciences. March 2020;3(1):13-23. doi:10.33434/cams.631112
Chicago Bonyo, Job. “Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane”. Communications in Advanced Mathematical Sciences 3, no. 1 (March 2020): 13-23. https://doi.org/10.33434/cams.631112.
EndNote Bonyo J (March 1, 2020) Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane. Communications in Advanced Mathematical Sciences 3 1 13–23.
IEEE J. Bonyo, “Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane”, Communications in Advanced Mathematical Sciences, vol. 3, no. 1, pp. 13–23, 2020, doi: 10.33434/cams.631112.
ISNAD Bonyo, Job. “Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane”. Communications in Advanced Mathematical Sciences 3/1 (March 2020), 13-23. https://doi.org/10.33434/cams.631112.
JAMA Bonyo J. Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane. Communications in Advanced Mathematical Sciences. 2020;3:13–23.
MLA Bonyo, Job. “Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane”. Communications in Advanced Mathematical Sciences, vol. 3, no. 1, 2020, pp. 13-23, doi:10.33434/cams.631112.
Vancouver Bonyo J. Reproducing Kernels for Hardy and Bergman Spaces of the Upper Half Plane. Communications in Advanced Mathematical Sciences. 2020;3(1):13-2.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..