Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 5 - 34, 30.09.2018
https://doi.org/10.33434/cams.441035

Abstract

References

  • [1] T. All, On p-adic annihilators of real ideal classes, J. Number Theory 133 (2013), no. 7, 2324–2338. https://doi. org/10.1016/j.jnt.2012.12.013
  • [2] T. All, Gauss sums, Stickelberger’s theorem, and the Gras conjecture for ray class groups (2015). https://arxiv. org/abs/1502.01578
  • [3] K. Belabas and J-F. Jaulent The logarithmic class group package in PARI/GP, Publ. Math. Fac. Sci. Besanc¸on (Th´eorie des Nombres) (2016), 5–18. http://pmb.univ-fcomte.fr/2016/Belabas_Jaulent.pdf
  • [4] J-R. Belliard and A. Martin, Annihilation of real classes (2014), 10 pp. http://jrbelliard.perso.math.cnrs.fr/BM1.pdf
  • [5] J-R. Belliard and T. Nguyen Quang Do, On modified circular units and annihilation of real classes, Nagoya Math. J. 177 (2005), 77–115. https://doi.org/10.1017/S0027763000009065
  • [6] J. Coates, p-adic L-functions and Iwasawa’s theory, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London (1977), 269–353.
  • [7] J. Fresnel, Nombres de Bernoulli et fonctions L p-adiques, S´eminaire Delange–Pisot–Poitou (Th´eorie des nombres), Tome 7, (1965-1966), no. 2, Expos´e no. 14, 1–15. http://www.numdam.org/item?id=SDPP_1965-1966__7_2_A3_0
  • [8] G. Gras, Class Field Theory: from theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer, 2005, xiii+507 pages. https://www.researchgate.net/publication/268005797
  • [9] G. Gras, The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator, Int. J. Number Theory, 14 (2018), no. 2, 329–337. https://doi.org/10.1142/S1793042118500203
  • [10] G. Gras, On p-rationality of number fields. Applications – PARI/GP programs, Publ. Math. Fac. Sci. Besanc¸on (Th´eorie des Nombres), Ann´ees 2017/2018 (to appear). https://arxiv.org/pdf/1709.06388.pdf
  • [11] G. Gras, Heuristics and conjectures in direction of a p-adic Brauer–Siegel theorem (2018), Math. Comp. (to appear). https://doi.org/10.1090/mcom/3395
  • [12] G. Gras, Annulation du groupe des `-classes g´en´eralis´ees d’une extension ab´elienne r´eelle de degr´e premier `, Annales de l’institut Fourier 29 (1979), no 1, 15–32. http://www.numdam.org/item?id=AIF_1979__29_1_15_0
  • [13] G. Gras, Sur la construction des fonctions L p-adiques ab´eliennes, S´eminaire Delange–Pisot–Poitou (Th´eorie des nombres), Tome 20 (1978–1979), no. 2 , Expos´e no. 22, 1–20. http://www.numdam.org/item?id=SDPP_1978-1979__20_2_A1_0
  • [14] G. Gras, Remarks on K2 of number fields, Jour. Number Theory 23(3) (1986), 322–335.http://www. sciencedirect.com/science/article/pii/0022314X86900776 https://www.degruyter.com/view/j/crll.1982.issue-333/crll.1982.333.86/crll.1982. 333.86.xmlhttps://www.degruyter.com/view/j/crll.1983.issue-343/crll.1983.343.64/crll.1983.343.64.xml
  • [15] C. Greither, Class groups of abelian fields, and the Main Conjecture, Ann. Inst. Fourier (Grenoble), 42 (1992), no. 3, 449–499. http://www.numdam.org/article/AIF_1992__42_3_449_0.pdf
  • [16] J-F. Jaulent, Th´eorie `-adique globale du corps de classes, J. Th´eorie des Nombres de Bordeaux 10 (1998), no. 2, p. 355–397. http://www.numdam.org/article/JTNB_1998__10_2_355_0.pdf
  • [17] J-F. Jaulent Note sur la conjecture de Greenberg, J. Ramanujan Math. Soc. (2017). http://jrms.ramanujanmathsociety.org/in-publication/in-publication-list/note-sur-la-conjecture-de-greenberg
  • [18] T. Nguyen Quang Do, Sur la Zp-torsion de certains modules galoisiens, Ann. Inst. Fourier 36 (1986), no. 2, 27–46. http://www.numdam.org/article/AIF_1986__36_2_27_0.pdf
  • [19] T. Nguyen Quang Do, Conjecture principale ´equivariante, id´eaux de Fitting et annulateurs en th´eorie dIwasawa, Journal de Th´eorie des Nombres de Bordeaux 17 (2005), 643–668. http://www.numdam.org/article/JTNB_2005__17_2_643_0.pdf
  • [20] A. Nickel, Annihilating wild kernels (2017). https://arxiv.org/abs/1703.09088
  • [21] T. Nguyen Quang Do and V´esale Nicolas, Nombres de Weil, sommes de Gauss et annulateurs galoisiens, Amer. J. Math. 133 (2011), no. 6, 1533–1571. http://www.jstor.org/stable/41302045
  • [22] B. Oriat, Annulation de groupes de classes r´eelles, Nagoya Math. J. 81 (1981), 45–56. https://projecteuclid.org/download/pdf_1/euclid.nmj/1118786304
  • [23] The PARI Group, PARI/GP, version 2.9.0, Universit´e de Bordeaux (2016). http://pari.math.u-bordeaux.fr/http://www.sagemath.org/fr/telecharger.html
  • [24] J-P. Serre, Sur le r´esidu de la fonction zˆeta p-adique d’un corps de nombres, C.R. Acad. Sci. Paris 287 (1978), S´erie I,183–188.
  • [25] P. Snaith, Relative K0, annihilators, Fitting ideals and the Stickelberger phenomena, Proceedings of the London Mathematical Society 90 (1992), no. 3, 545–590. https://doi.org/10.1112/S0024611504015163
  • [26] D. Solomon, On a construction of p-units in abelian fields, Invent. Math. 109 (1992), no. 2, 329–350.http://eudml. org/doc/144024
  • [27] D. Solomon, Some New Maps and Ideals in Classical Iwasawa Theory with Applications, https://arxiv.org/pdf/ 0905.4336.pdf (2009), 36 pp..
  • [28] F. Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. second series 128 (1988), no. 1, 1–18. http://www.jstor.org/stable/1971460
  • [29] T. Tsuji, The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions, J. Math. Sci. Univ. Tokyo 8 (2001), 211–222. http://www.ms.u-tokyo.ac.jp/journal/pdf/jms080203.pdf
  • [30] L.C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer enlarged second edition 1997.

Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$

Year 2018, Volume: 1 Issue: 1, 5 - 34, 30.09.2018
https://doi.org/10.33434/cams.441035

Abstract

Let $K$ be a real abelian extension of $\mathbb{Q}$. Let $p$ be a prime number, $S$ the set of $p$-places of $K$ and ${\mathcal G}_{K,S}$ the Galois group of the maximal $S \cup \{\infty\}$-ramified pro-$p$-extension of $K$ (i.e., unramified outside $p$ and $\infty$). We revisit the problem of annihilation of the $p$-torsion group ${\mathcal T}_K := \text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ initiated by us and Oriat then systematized in our paper on the construction of $p$-adic $L$-functions in which we obtained a canonical ideal annihilator of ${\mathcal T}_K$ in full generality (1978--1981). Afterwards (1992--2014) some annihilators, using cyclotomic units, were proposed by Solomon, Belliard--Nguyen Quang Do, Nguyen Quang Do--Nicolas, All, Belliard--Martin. In this text, we improve our original papers and show that, in general, the Solomon elements are not optimal and/or partly degenerated. We obtain, whatever $K$ and $p$, an universal non-degenerated annihilator in terms of $p$-adic logarithms of cyclotomic numbers related to $L_p$-functions at $s=1$ of {primitive characters of $K$} (Theorem 9.4). Some computations are given with PARI programs; the case $p=2$ is analyzed and illustrated in degrees $2$, $3$, $4$ to test a conjecture.

References

  • [1] T. All, On p-adic annihilators of real ideal classes, J. Number Theory 133 (2013), no. 7, 2324–2338. https://doi. org/10.1016/j.jnt.2012.12.013
  • [2] T. All, Gauss sums, Stickelberger’s theorem, and the Gras conjecture for ray class groups (2015). https://arxiv. org/abs/1502.01578
  • [3] K. Belabas and J-F. Jaulent The logarithmic class group package in PARI/GP, Publ. Math. Fac. Sci. Besanc¸on (Th´eorie des Nombres) (2016), 5–18. http://pmb.univ-fcomte.fr/2016/Belabas_Jaulent.pdf
  • [4] J-R. Belliard and A. Martin, Annihilation of real classes (2014), 10 pp. http://jrbelliard.perso.math.cnrs.fr/BM1.pdf
  • [5] J-R. Belliard and T. Nguyen Quang Do, On modified circular units and annihilation of real classes, Nagoya Math. J. 177 (2005), 77–115. https://doi.org/10.1017/S0027763000009065
  • [6] J. Coates, p-adic L-functions and Iwasawa’s theory, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London (1977), 269–353.
  • [7] J. Fresnel, Nombres de Bernoulli et fonctions L p-adiques, S´eminaire Delange–Pisot–Poitou (Th´eorie des nombres), Tome 7, (1965-1966), no. 2, Expos´e no. 14, 1–15. http://www.numdam.org/item?id=SDPP_1965-1966__7_2_A3_0
  • [8] G. Gras, Class Field Theory: from theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer, 2005, xiii+507 pages. https://www.researchgate.net/publication/268005797
  • [9] G. Gras, The p-adic Kummer-Leopoldt Constant: Normalized p-adic Regulator, Int. J. Number Theory, 14 (2018), no. 2, 329–337. https://doi.org/10.1142/S1793042118500203
  • [10] G. Gras, On p-rationality of number fields. Applications – PARI/GP programs, Publ. Math. Fac. Sci. Besanc¸on (Th´eorie des Nombres), Ann´ees 2017/2018 (to appear). https://arxiv.org/pdf/1709.06388.pdf
  • [11] G. Gras, Heuristics and conjectures in direction of a p-adic Brauer–Siegel theorem (2018), Math. Comp. (to appear). https://doi.org/10.1090/mcom/3395
  • [12] G. Gras, Annulation du groupe des `-classes g´en´eralis´ees d’une extension ab´elienne r´eelle de degr´e premier `, Annales de l’institut Fourier 29 (1979), no 1, 15–32. http://www.numdam.org/item?id=AIF_1979__29_1_15_0
  • [13] G. Gras, Sur la construction des fonctions L p-adiques ab´eliennes, S´eminaire Delange–Pisot–Poitou (Th´eorie des nombres), Tome 20 (1978–1979), no. 2 , Expos´e no. 22, 1–20. http://www.numdam.org/item?id=SDPP_1978-1979__20_2_A1_0
  • [14] G. Gras, Remarks on K2 of number fields, Jour. Number Theory 23(3) (1986), 322–335.http://www. sciencedirect.com/science/article/pii/0022314X86900776 https://www.degruyter.com/view/j/crll.1982.issue-333/crll.1982.333.86/crll.1982. 333.86.xmlhttps://www.degruyter.com/view/j/crll.1983.issue-343/crll.1983.343.64/crll.1983.343.64.xml
  • [15] C. Greither, Class groups of abelian fields, and the Main Conjecture, Ann. Inst. Fourier (Grenoble), 42 (1992), no. 3, 449–499. http://www.numdam.org/article/AIF_1992__42_3_449_0.pdf
  • [16] J-F. Jaulent, Th´eorie `-adique globale du corps de classes, J. Th´eorie des Nombres de Bordeaux 10 (1998), no. 2, p. 355–397. http://www.numdam.org/article/JTNB_1998__10_2_355_0.pdf
  • [17] J-F. Jaulent Note sur la conjecture de Greenberg, J. Ramanujan Math. Soc. (2017). http://jrms.ramanujanmathsociety.org/in-publication/in-publication-list/note-sur-la-conjecture-de-greenberg
  • [18] T. Nguyen Quang Do, Sur la Zp-torsion de certains modules galoisiens, Ann. Inst. Fourier 36 (1986), no. 2, 27–46. http://www.numdam.org/article/AIF_1986__36_2_27_0.pdf
  • [19] T. Nguyen Quang Do, Conjecture principale ´equivariante, id´eaux de Fitting et annulateurs en th´eorie dIwasawa, Journal de Th´eorie des Nombres de Bordeaux 17 (2005), 643–668. http://www.numdam.org/article/JTNB_2005__17_2_643_0.pdf
  • [20] A. Nickel, Annihilating wild kernels (2017). https://arxiv.org/abs/1703.09088
  • [21] T. Nguyen Quang Do and V´esale Nicolas, Nombres de Weil, sommes de Gauss et annulateurs galoisiens, Amer. J. Math. 133 (2011), no. 6, 1533–1571. http://www.jstor.org/stable/41302045
  • [22] B. Oriat, Annulation de groupes de classes r´eelles, Nagoya Math. J. 81 (1981), 45–56. https://projecteuclid.org/download/pdf_1/euclid.nmj/1118786304
  • [23] The PARI Group, PARI/GP, version 2.9.0, Universit´e de Bordeaux (2016). http://pari.math.u-bordeaux.fr/http://www.sagemath.org/fr/telecharger.html
  • [24] J-P. Serre, Sur le r´esidu de la fonction zˆeta p-adique d’un corps de nombres, C.R. Acad. Sci. Paris 287 (1978), S´erie I,183–188.
  • [25] P. Snaith, Relative K0, annihilators, Fitting ideals and the Stickelberger phenomena, Proceedings of the London Mathematical Society 90 (1992), no. 3, 545–590. https://doi.org/10.1112/S0024611504015163
  • [26] D. Solomon, On a construction of p-units in abelian fields, Invent. Math. 109 (1992), no. 2, 329–350.http://eudml. org/doc/144024
  • [27] D. Solomon, Some New Maps and Ideals in Classical Iwasawa Theory with Applications, https://arxiv.org/pdf/ 0905.4336.pdf (2009), 36 pp..
  • [28] F. Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. second series 128 (1988), no. 1, 1–18. http://www.jstor.org/stable/1971460
  • [29] T. Tsuji, The Stickelberger Elements and the Cyclotomic Units in the Cyclotomic Zp-Extensions, J. Math. Sci. Univ. Tokyo 8 (2001), 211–222. http://www.ms.u-tokyo.ac.jp/journal/pdf/jms080203.pdf
  • [30] L.C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer enlarged second edition 1997.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Georges Gras

Publication Date September 30, 2018
Submission Date July 5, 2018
Acceptance Date September 18, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Gras, G. (2018). Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$. Communications in Advanced Mathematical Sciences, 1(1), 5-34. https://doi.org/10.33434/cams.441035
AMA Gras G. Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$. Communications in Advanced Mathematical Sciences. September 2018;1(1):5-34. doi:10.33434/cams.441035
Chicago Gras, Georges. “Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for Real Abelian Extensions $K/Q$”. Communications in Advanced Mathematical Sciences 1, no. 1 (September 2018): 5-34. https://doi.org/10.33434/cams.441035.
EndNote Gras G (September 1, 2018) Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$. Communications in Advanced Mathematical Sciences 1 1 5–34.
IEEE G. Gras, “Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$”, Communications in Advanced Mathematical Sciences, vol. 1, no. 1, pp. 5–34, 2018, doi: 10.33434/cams.441035.
ISNAD Gras, Georges. “Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for Real Abelian Extensions $K/Q$”. Communications in Advanced Mathematical Sciences 1/1 (September 2018), 5-34. https://doi.org/10.33434/cams.441035.
JAMA Gras G. Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$. Communications in Advanced Mathematical Sciences. 2018;1:5–34.
MLA Gras, Georges. “Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for Real Abelian Extensions $K/Q$”. Communications in Advanced Mathematical Sciences, vol. 1, no. 1, 2018, pp. 5-34, doi:10.33434/cams.441035.
Vancouver Gras G. Annihilation of $\text{tor}_{Z_{p}}(\mathcal G_{K,S}^{ab})$ for real abelian extensions $K/Q$. Communications in Advanced Mathematical Sciences. 2018;1(1):5-34.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..