We replace Chebyshev's method for solving equations requiring the second derivative by a Chebyshev-type second derivative free method. The local convergence analysis of the new method is provided using hypotheses only on the first derivative in contrast to the Chebyshev method using hypotheses on the second derivative. This way we extend the applicability of the method. Numerical examples are also used to test the convergence criteria and to obtain error bounds and also the radius of convergence.
Chebyshev method, Newton method, Fr\'echet derivative, Local convergence, Divided differences
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors |
|
Publication Date | September 30, 2018 |
Submission Date | July 6, 2018 |
Acceptance Date | August 17, 2018 |
Published in Issue | Year 2018 Volume: 1 Issue: 1 |
Bibtex | @research article { cams441220, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2018}, volume = {1}, number = {1}, pages = {84 - 90}, doi = {10.33434/cams.441220}, title = {Local convergence for composite Chebyshev-type methods}, key = {cite}, author = {Argyros, İoannis K and George, Santhosh} } |
APA | Argyros, İ. K. & George, S. (2018). Local convergence for composite Chebyshev-type methods . Communications in Advanced Mathematical Sciences , 1 (1) , 84-90 . DOI: 10.33434/cams.441220 |
MLA | Argyros, İ. K. , George, S. "Local convergence for composite Chebyshev-type methods" . Communications in Advanced Mathematical Sciences 1 (2018 ): 84-90 <https://dergipark.org.tr/en/pub/cams/issue/39351/441220> |
Chicago | Argyros, İ. K. , George, S. "Local convergence for composite Chebyshev-type methods". Communications in Advanced Mathematical Sciences 1 (2018 ): 84-90 |
RIS | TY - JOUR T1 - Local convergence for composite Chebyshev-type methods AU - İoannis KArgyros, SanthoshGeorge Y1 - 2018 PY - 2018 N1 - doi: 10.33434/cams.441220 DO - 10.33434/cams.441220 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 84 EP - 90 VL - 1 IS - 1 SN - 2651-4001- M3 - doi: 10.33434/cams.441220 UR - https://doi.org/10.33434/cams.441220 Y2 - 2018 ER - |
EndNote | %0 Communications in Advanced Mathematical Sciences Local convergence for composite Chebyshev-type methods %A İoannis K Argyros , Santhosh George %T Local convergence for composite Chebyshev-type methods %D 2018 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 1 %N 1 %R doi: 10.33434/cams.441220 %U 10.33434/cams.441220 |
ISNAD | Argyros, İoannis K , George, Santhosh . "Local convergence for composite Chebyshev-type methods". Communications in Advanced Mathematical Sciences 1 / 1 (September 2018): 84-90 . https://doi.org/10.33434/cams.441220 |
AMA | Argyros İ. K. , George S. Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences. 2018; 1(1): 84-90. |
Vancouver | Argyros İ. K. , George S. Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences. 2018; 1(1): 84-90. |
IEEE | İ. K. Argyros and S. George , "Local convergence for composite Chebyshev-type methods", Communications in Advanced Mathematical Sciences, vol. 1, no. 1, pp. 84-90, Sep. 2018, doi:10.33434/cams.441220 |