Research Article
BibTex RIS Cite

Local convergence for composite Chebyshev-type methods

Year 2018, Volume: 1 Issue: 1, 84 - 90, 30.09.2018
https://doi.org/10.33434/cams.441220

Abstract

We replace Chebyshev's method for solving equations requiring the second derivative by a Chebyshev-type second derivative free method. The local convergence analysis of the new method is provided using hypotheses only on the first derivative in contrast to the Chebyshev method using hypotheses on the second derivative. This way we extend the applicability of the method. Numerical examples are also used to test the convergence criteria and to obtain error bounds and also the radius of convergence.

References

  • [1] I.K. Argyros, Convergence and applications of Newton-type iteration, Springer, New York, 2008.
  • [2] I.K Argyros,A unified local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach spaces, J. Math. Appl., 288, (2004), 374-397.
  • [3] I. K. Argyros,A. A. Magre˜na˜n, Iterative Methods and their dynamics with applications: A Contemporary Study, CRC Press, 2017.
  • [4] I. K. Argyros, S. George, N. Thapa, Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-I, Nova Publishes, NY, 2018.
  • [5] I. K. Argyros, S. George, N. Thapa, Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-II, Nova Publishes, NY, 2018.
  • [6] M. Grau-Sanchez, A . Grau, M. Noguera, Ostrowski type methods for solving systems of nonlinear equations, Appl. Math. Comput., 218, (2011), 2377-2385.
  • [7] J. Kou, Y. Li, X. Wang, Some variants of Ostrowski’s method with seventh-order convergence, J. Comput. Appl. Math., 209, (2007), 153-159.
  • [8] H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint iteration, J. ACM 21, (1974), 643-651.
  • [9] A. A. Magrenan, Different anomalies in a Jarratt family of iterative root finding methods, Appl. Math. Comput. 233, (2014), 29-38.
  • [10] A. A. Magren´an, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput. 248, (2014), 29-38.
  • [11] J. M. Ortega and R. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, 1970, New York.
  • [12] M. S. Petkovic, B. Neta, L. Petkovic, J. Dˇzuniˇc, Multipoint methods for solving nonlinear equations, Elsevier, 2013.
  • [13] J.F.Traub, Iterative methods for the solution of equations, AMS Chelsea Publishing, 1982.
  • [14] S. Weerkoon, T. G. I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett., 13, (2000), 87-93.
Year 2018, Volume: 1 Issue: 1, 84 - 90, 30.09.2018
https://doi.org/10.33434/cams.441220

Abstract

References

  • [1] I.K. Argyros, Convergence and applications of Newton-type iteration, Springer, New York, 2008.
  • [2] I.K Argyros,A unified local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach spaces, J. Math. Appl., 288, (2004), 374-397.
  • [3] I. K. Argyros,A. A. Magre˜na˜n, Iterative Methods and their dynamics with applications: A Contemporary Study, CRC Press, 2017.
  • [4] I. K. Argyros, S. George, N. Thapa, Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-I, Nova Publishes, NY, 2018.
  • [5] I. K. Argyros, S. George, N. Thapa, Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-II, Nova Publishes, NY, 2018.
  • [6] M. Grau-Sanchez, A . Grau, M. Noguera, Ostrowski type methods for solving systems of nonlinear equations, Appl. Math. Comput., 218, (2011), 2377-2385.
  • [7] J. Kou, Y. Li, X. Wang, Some variants of Ostrowski’s method with seventh-order convergence, J. Comput. Appl. Math., 209, (2007), 153-159.
  • [8] H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint iteration, J. ACM 21, (1974), 643-651.
  • [9] A. A. Magrenan, Different anomalies in a Jarratt family of iterative root finding methods, Appl. Math. Comput. 233, (2014), 29-38.
  • [10] A. A. Magren´an, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput. 248, (2014), 29-38.
  • [11] J. M. Ortega and R. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, 1970, New York.
  • [12] M. S. Petkovic, B. Neta, L. Petkovic, J. Dˇzuniˇc, Multipoint methods for solving nonlinear equations, Elsevier, 2013.
  • [13] J.F.Traub, Iterative methods for the solution of equations, AMS Chelsea Publishing, 1982.
  • [14] S. Weerkoon, T. G. I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett., 13, (2000), 87-93.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

İoannis K Argyros This is me

Santhosh George This is me

Publication Date September 30, 2018
Submission Date July 6, 2018
Acceptance Date August 17, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Argyros, İ. K., & George, S. (2018). Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences, 1(1), 84-90. https://doi.org/10.33434/cams.441220
AMA Argyros İK, George S. Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences. September 2018;1(1):84-90. doi:10.33434/cams.441220
Chicago Argyros, İoannis K, and Santhosh George. “Local Convergence for Composite Chebyshev-Type Methods”. Communications in Advanced Mathematical Sciences 1, no. 1 (September 2018): 84-90. https://doi.org/10.33434/cams.441220.
EndNote Argyros İK, George S (September 1, 2018) Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences 1 1 84–90.
IEEE İ. K. Argyros and S. George, “Local convergence for composite Chebyshev-type methods”, Communications in Advanced Mathematical Sciences, vol. 1, no. 1, pp. 84–90, 2018, doi: 10.33434/cams.441220.
ISNAD Argyros, İoannis K - George, Santhosh. “Local Convergence for Composite Chebyshev-Type Methods”. Communications in Advanced Mathematical Sciences 1/1 (September 2018), 84-90. https://doi.org/10.33434/cams.441220.
JAMA Argyros İK, George S. Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences. 2018;1:84–90.
MLA Argyros, İoannis K and Santhosh George. “Local Convergence for Composite Chebyshev-Type Methods”. Communications in Advanced Mathematical Sciences, vol. 1, no. 1, 2018, pp. 84-90, doi:10.33434/cams.441220.
Vancouver Argyros İK, George S. Local convergence for composite Chebyshev-type methods. Communications in Advanced Mathematical Sciences. 2018;1(1):84-90.

Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..