Research Article
PDF BibTex RIS Cite

Forcing linearity numbers for coatomic modules

Year 2018, Volume: 1 Issue: 1, 1 - 4, 30.09.2018
https://doi.org/10.33434/cams.446020

Abstract

We show that an integer $ n\in \mathbb{N}\cup \lbrace 0 \rbrace $ is the forcing linearity number of a coatomic module over an arbitrary commutative ring with identity if and only if $n\in \left\{ 0,1,2,\infty \right\} \cup \left\{ q+2\left\vert q\text{ is a prime power}\right. \right\} .$

References

  • [1] C.Faith, Algebra. II. Ring theory. Grundlehren der Mathematischen Wissenschaften, No. 191. Springer- Verlag, Berlin- New York, 1976.
  • [2] R.M.Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133- 1137.
  • [3] C.J.Maxson, J.H.Meyer, Forcing linearity numbers, J.Algebra 223 (2000), 190- 207.
  • [4] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J.Algebra 256 (2002), 66- 84.
  • [5] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for finitely generated modules, Rocky Mountain J.Math. 35 (3) (2005), 929-939.
  • [6] A.A.Tuganbaev, Rings whose nonzero modules have maximal submodules, J.Math.Sci. (New York) 109 (2002), no.3, 1589- 1640.
  • [7] H. Zöschinger, Koatomare Moduln, Math. Z. 170 (1980), 221- 232.

Year 2018, Volume: 1 Issue: 1, 1 - 4, 30.09.2018
https://doi.org/10.33434/cams.446020

Abstract

References

  • [1] C.Faith, Algebra. II. Ring theory. Grundlehren der Mathematischen Wissenschaften, No. 191. Springer- Verlag, Berlin- New York, 1976.
  • [2] R.M.Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133- 1137.
  • [3] C.J.Maxson, J.H.Meyer, Forcing linearity numbers, J.Algebra 223 (2000), 190- 207.
  • [4] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J.Algebra 256 (2002), 66- 84.
  • [5] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for finitely generated modules, Rocky Mountain J.Math. 35 (3) (2005), 929-939.
  • [6] A.A.Tuganbaev, Rings whose nonzero modules have maximal submodules, J.Math.Sci. (New York) 109 (2002), no.3, 1589- 1640.
  • [7] H. Zöschinger, Koatomare Moduln, Math. Z. 170 (1980), 221- 232.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Peter R. FUCHS
Johannes Kepler University
0000-0001-9165-3688
Austria

Publication Date September 30, 2018
Submission Date July 19, 2018
Acceptance Date September 19, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

Bibtex @research article { cams446020, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2018}, volume = {1}, number = {1}, pages = {1 - 4}, doi = {10.33434/cams.446020}, title = {Forcing linearity numbers for coatomic modules}, key = {cite}, author = {Fuchs, Peter R.} }
APA Fuchs, P. R. (2018). Forcing linearity numbers for coatomic modules . Communications in Advanced Mathematical Sciences , 1 (1) , 1-4 . DOI: 10.33434/cams.446020
MLA Fuchs, P. R. "Forcing linearity numbers for coatomic modules" . Communications in Advanced Mathematical Sciences 1 (2018 ): 1-4 <https://dergipark.org.tr/en/pub/cams/issue/39351/446020>
Chicago Fuchs, P. R. "Forcing linearity numbers for coatomic modules". Communications in Advanced Mathematical Sciences 1 (2018 ): 1-4
RIS TY - JOUR T1 - Forcing linearity numbers for coatomic modules AU - Peter R.Fuchs Y1 - 2018 PY - 2018 N1 - doi: 10.33434/cams.446020 DO - 10.33434/cams.446020 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 1 EP - 4 VL - 1 IS - 1 SN - 2651-4001- M3 - doi: 10.33434/cams.446020 UR - https://doi.org/10.33434/cams.446020 Y2 - 2018 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Forcing linearity numbers for coatomic modules %A Peter R. Fuchs %T Forcing linearity numbers for coatomic modules %D 2018 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 1 %N 1 %R doi: 10.33434/cams.446020 %U 10.33434/cams.446020
ISNAD Fuchs, Peter R. . "Forcing linearity numbers for coatomic modules". Communications in Advanced Mathematical Sciences 1 / 1 (September 2018): 1-4 . https://doi.org/10.33434/cams.446020
AMA Fuchs P. R. Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences. 2018; 1(1): 1-4.
Vancouver Fuchs P. R. Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences. 2018; 1(1): 1-4.
IEEE P. R. Fuchs , "Forcing linearity numbers for coatomic modules", Communications in Advanced Mathematical Sciences, vol. 1, no. 1, pp. 1-4, Sep. 2018, doi:10.33434/cams.446020
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.