[1] P. J. Davis, Interpolation and Approximation, Dover, N.Y., 1975.
[2] A. S. Househoulder, Principles of Numerical Analysis, McGraw Hill, Columbus, N.Y., 1953.
[3] D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole Pub. Co., Cal., 1991.
[4] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, N.Y., 1965.
[5] N. Macon, A. Spitzbart, Inverses of Vandermonde matrices, Amer. Math. Monthly, 65(2) (1958), 95-100.
http://dx.doi.org/10.2307/2308881
[6] E. Asplund, L. Bungart, A First Course in Integration, Holt, Rinehart and Winston, N.Y., 1966.
[7] L. L. Schumaker, Spline Functions Basic Theory, Wiley, N.Y., 1981.
[8] G. Peano, Resto nelle formule di quadratura espresso con un integrale definito, Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis.
Mat. Nat., Serie 5, 22(I) (1913), 562-569.
[9] R. von Mises, U¨ ber allgemeine quadraturformeln, J. Reine Angew. Math., 174 (1935), 56-67; reprinted in Selected Papers
of Richard von Mises, Vol. 1, 559-574, American Mathematical Society, Providence, R.I., 1963.
[10] A. Ghizzetti, A. Ossicini, Quadrature Formulae, Academic Press, N.Y., 1970.
[11] F. Dubeau, Revisited optimal error bounds for interpolatory integration rules, Adv. Numer. Anal., 2016 (2016), Article ID
3170595, 8 pages, http://dx.doi.org/10.1155/2016/3170595.
[12] F. Dubeau, The method of undetermined coefficients: general approach and optimal error bounds, J. Math. Anal., 5(4)
(2014), 1-11.
[13] J. S. C. Prentice, Truncation and roundoff errors in three-point approximations of first and second derivatives, Appl. Math.
Comput., 217 (2011), 4576-4581. http://dx.doi.org/10.1016/j.amc.2010.11.008
[14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PN, 2002.
http://dx.doi.org/10.1137/1.9780898718027
Standard and Corrected Numerical Differentiation Formulae
Year 2019,
Volume: 2 Issue: 2, 135 - 153, 27.06.2019
Standard numerical differentiation rules that might be established by the method of undetermined coefficients are revisited. Best truncation error bounds are established by a direct method and by the method of integration by parts "backwards". A new method to increase the order of the truncation error using a primitive is presented. This approach leads to corrected numerical differentiation rules. Differentiation formulae and numerical tests are presented.
[1] P. J. Davis, Interpolation and Approximation, Dover, N.Y., 1975.
[2] A. S. Househoulder, Principles of Numerical Analysis, McGraw Hill, Columbus, N.Y., 1953.
[3] D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole Pub. Co., Cal., 1991.
[4] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, N.Y., 1965.
[5] N. Macon, A. Spitzbart, Inverses of Vandermonde matrices, Amer. Math. Monthly, 65(2) (1958), 95-100.
http://dx.doi.org/10.2307/2308881
[6] E. Asplund, L. Bungart, A First Course in Integration, Holt, Rinehart and Winston, N.Y., 1966.
[7] L. L. Schumaker, Spline Functions Basic Theory, Wiley, N.Y., 1981.
[8] G. Peano, Resto nelle formule di quadratura espresso con un integrale definito, Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis.
Mat. Nat., Serie 5, 22(I) (1913), 562-569.
[9] R. von Mises, U¨ ber allgemeine quadraturformeln, J. Reine Angew. Math., 174 (1935), 56-67; reprinted in Selected Papers
of Richard von Mises, Vol. 1, 559-574, American Mathematical Society, Providence, R.I., 1963.
[10] A. Ghizzetti, A. Ossicini, Quadrature Formulae, Academic Press, N.Y., 1970.
[11] F. Dubeau, Revisited optimal error bounds for interpolatory integration rules, Adv. Numer. Anal., 2016 (2016), Article ID
3170595, 8 pages, http://dx.doi.org/10.1155/2016/3170595.
[12] F. Dubeau, The method of undetermined coefficients: general approach and optimal error bounds, J. Math. Anal., 5(4)
(2014), 1-11.
[13] J. S. C. Prentice, Truncation and roundoff errors in three-point approximations of first and second derivatives, Appl. Math.
Comput., 217 (2011), 4576-4581. http://dx.doi.org/10.1016/j.amc.2010.11.008
[14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PN, 2002.
http://dx.doi.org/10.1137/1.9780898718027
Dubeau, F. (2019). Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences, 2(2), 135-153. https://doi.org/10.33434/cams.512796
AMA
Dubeau F. Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences. June 2019;2(2):135-153. doi:10.33434/cams.512796
Chicago
Dubeau, François. “Standard and Corrected Numerical Differentiation Formulae”. Communications in Advanced Mathematical Sciences 2, no. 2 (June 2019): 135-53. https://doi.org/10.33434/cams.512796.
EndNote
Dubeau F (June 1, 2019) Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences 2 2 135–153.
IEEE
F. Dubeau, “Standard and Corrected Numerical Differentiation Formulae”, Communications in Advanced Mathematical Sciences, vol. 2, no. 2, pp. 135–153, 2019, doi: 10.33434/cams.512796.
ISNAD
Dubeau, François. “Standard and Corrected Numerical Differentiation Formulae”. Communications in Advanced Mathematical Sciences 2/2 (June 2019), 135-153. https://doi.org/10.33434/cams.512796.
JAMA
Dubeau F. Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences. 2019;2:135–153.
MLA
Dubeau, François. “Standard and Corrected Numerical Differentiation Formulae”. Communications in Advanced Mathematical Sciences, vol. 2, no. 2, 2019, pp. 135-53, doi:10.33434/cams.512796.
Vancouver
Dubeau F. Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences. 2019;2(2):135-53.