Research Article
PDF BibTex RIS Cite

Year 2020, Volume: 3 Issue: 1, 53 - 56, 25.03.2020
https://doi.org/10.33434/cams.679721

Abstract

References

  • [1] J. Wu, S. Li, S. Chai, Existence and nonexistence of a global solution for coupled nonlinear wave equations with damping and source, Nonlinear Anal., 72(11) (2010), 3969-3975.
  • [2] L. Fei, G. Hongjun, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstr. Appl. Anal., (2011) 1-14.
  • [3] E. Pişkin, N. Polat, Global existence, decay and blowup solution for coupled nonlinearwave equations with damping and source terms, Turk. J. Math., 37 (2013), 633-651.
  • [4] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Academic Press, 2003.
  • [5] A. Peyravi, Lower bounds of blow up time for a system of semilinear hyperbolic Petrovsky equations, Acta Math. Sci. 36B(3) (2016), 683-688.
  • [6] E. Pişkin, Lower bounds for blow up time of coupled nonlinear Klein-Gordon equations, Gulf Journal of Mathematics, 5(2) (2017), 56-61.
  • [7] N. Mezaour, E. Pişkin, Decay rate and blow up solutions for coupled quasilinear system, Boletin de la Sociedad Matematica Mexicana. (in press)

Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations

Year 2020, Volume: 3 Issue: 1, 53 - 56, 25.03.2020
https://doi.org/10.33434/cams.679721

Abstract

The initial and Dirichlet boundary value problem of nonlinear hyperbolic type equations in a bounded domain is studied. We established a lower bounds for the blow up time.

References

  • [1] J. Wu, S. Li, S. Chai, Existence and nonexistence of a global solution for coupled nonlinear wave equations with damping and source, Nonlinear Anal., 72(11) (2010), 3969-3975.
  • [2] L. Fei, G. Hongjun, Global nonexistence of positive initial-energy solutions for coupled nonlinear wave equations with damping and source terms, Abstr. Appl. Anal., (2011) 1-14.
  • [3] E. Pişkin, N. Polat, Global existence, decay and blowup solution for coupled nonlinearwave equations with damping and source terms, Turk. J. Math., 37 (2013), 633-651.
  • [4] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Academic Press, 2003.
  • [5] A. Peyravi, Lower bounds of blow up time for a system of semilinear hyperbolic Petrovsky equations, Acta Math. Sci. 36B(3) (2016), 683-688.
  • [6] E. Pişkin, Lower bounds for blow up time of coupled nonlinear Klein-Gordon equations, Gulf Journal of Mathematics, 5(2) (2017), 56-61.
  • [7] N. Mezaour, E. Pişkin, Decay rate and blow up solutions for coupled quasilinear system, Boletin de la Sociedad Matematica Mexicana. (in press)

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Erhan PİŞKİN
DICLE UNIVERSITY
0000-0001-6587-4479
Türkiye


Yavuz DİNÇ
Mardin Artuklu University
0000-0003-0897-4101
Türkiye


Prof.dr.cemil TUNC
Yüzüncü Yıl University
0000-0003-2909-8753
Türkiye

Publication Date March 25, 2020
Submission Date January 24, 2020
Acceptance Date February 24, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

Bibtex @research article { cams679721, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2020}, volume = {3}, number = {1}, pages = {53 - 56}, doi = {10.33434/cams.679721}, title = {Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations}, key = {cite}, author = {Pişkin, Erhan and Dinç, Yavuz and Tunc, Prof.dr.cemil} }
APA Pişkin, E. , Dinç, Y. & Tunc, P. (2020). Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations . Communications in Advanced Mathematical Sciences , 3 (1) , 53-56 . DOI: 10.33434/cams.679721
MLA Pişkin, E. , Dinç, Y. , Tunc, P. "Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations" . Communications in Advanced Mathematical Sciences 3 (2020 ): 53-56 <https://dergipark.org.tr/en/pub/cams/issue/53344/679721>
Chicago Pişkin, E. , Dinç, Y. , Tunc, P. "Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations". Communications in Advanced Mathematical Sciences 3 (2020 ): 53-56
RIS TY - JOUR T1 - Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations AU - ErhanPişkin, YavuzDinç, Prof.dr.cemilTunc Y1 - 2020 PY - 2020 N1 - doi: 10.33434/cams.679721 DO - 10.33434/cams.679721 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 53 EP - 56 VL - 3 IS - 1 SN - 2651-4001- M3 - doi: 10.33434/cams.679721 UR - https://doi.org/10.33434/cams.679721 Y2 - 2020 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations %A Erhan Pişkin , Yavuz Dinç , Prof.dr.cemil Tunc %T Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations %D 2020 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 3 %N 1 %R doi: 10.33434/cams.679721 %U 10.33434/cams.679721
ISNAD Pişkin, Erhan , Dinç, Yavuz , Tunc, Prof.dr.cemil . "Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations". Communications in Advanced Mathematical Sciences 3 / 1 (March 2020): 53-56 . https://doi.org/10.33434/cams.679721
AMA Pişkin E. , Dinç Y. , Tunc P. Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations. Communications in Advanced Mathematical Sciences. 2020; 3(1): 53-56.
Vancouver Pişkin E. , Dinç Y. , Tunc P. Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations. Communications in Advanced Mathematical Sciences. 2020; 3(1): 53-56.
IEEE E. Pişkin , Y. Dinç and P. Tunc , "Lower Bounds for the Blow up Time to a Coupled Nonlinear Hyperbolic Type Equations", Communications in Advanced Mathematical Sciences, vol. 3, no. 1, pp. 53-56, Mar. 2020, doi:10.33434/cams.679721
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.