Research Article
PDF BibTex RIS Cite

Year 2020, Volume: 3 Issue: 4, 218 - 224, 22.12.2020
https://doi.org/10.33434/cams.746503

Abstract

References

  • [1] V. Chinnadurai, K. Bharathivelan, Cubic bi-ideals in near-rings, International Journal of computer and Mathematical Sciences, Vol. 5, Issue 2(2016) 44 - 52
  • [2] V. Chinnadurai, K. Bharathivelan, Cubic Lateral Ideals in Ternary Near - Rings, International Advanced Research Journal in Science, Engineering and Technology, Vol. 3, Issue11(November 2016) 209 - 215
  • [3] J.S.Golan, Semirings and their applications, Kluwer Academic Publishers,1999.
  • [4] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 6(1958) 321.
  • [5] K.Iizuka, On the Jacobson radical of semiring, Tohoku Math.J., Vol.11 No. 2(1959), 409-421
  • [6] Y.B. Jun, M.A.Ozt¨ urk, S.Z.Song,¨ On Fuzzy h-ideals in hemiring, Information sciences, 162(2004), 211-226.
  • [7] Y.B. Jun, S.T. Jung and M.S. Kim, Cubic subgroups, Annals of Fuzzy Mathematics and Informatics, 2(2011), 9 - 15.
  • [8] Y.B. Jun, C.S. Kim and K.O. Yang, Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4(2012), 83 - 98.
  • [9] A. Khan, Y.B. Jun, S.I.A. Shah, M. Ali, Characterizations of hemirings in terms of cubic h-ideals, Soft Comput, DOI 10.1007/s00500-014-1396-4
  • [10] D.R.La Torre, On h-ideals and k-ideals in hemirings,Publ. Math. Debrecen 12(1965), 219-226.
  • [11] X.Ma, J.Zahn, Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Comput and Applic, 19(2010), 477-485
  • [12] D. Mandal, On Cubic h-ideals ofΓ-hemiring, Bull. Int. Math. Virtual Inst., Vol. 10, No.3, (2020), 567-579.
  • [13] S. K. Sardar, D. Mandal, On fuzzy h-ideals in h-regular Γ-hemiring and h-duo Γ-hemiring, Gen. Math. Notes, Vol. 2 No. 1,(2011), 64-85
  • [14] S.K.Sardar, D.Mandal, On fuzzy h-ideal in Γ-hemiring, Int. J. Pure. Appl. Math, Vol. 56, No. 3(2009),439-450
  • [15] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517
  • [16] L.A.Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.

Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals

Year 2020, Volume: 3 Issue: 4, 218 - 224, 22.12.2020
https://doi.org/10.33434/cams.746503

Abstract

The aim of this paper is to study $h$-hemiregular and $h$-intra-hemiregular $\Gamma$-hemiring using the combined concept of cubic set and \textit{h}-ideals.We have defined two types of compositions of cubic sets and used these to obtain some characterizations of $h$-hemiregular and $h$-intra-hemiregular $\Gamma$-hemiring.

References

  • [1] V. Chinnadurai, K. Bharathivelan, Cubic bi-ideals in near-rings, International Journal of computer and Mathematical Sciences, Vol. 5, Issue 2(2016) 44 - 52
  • [2] V. Chinnadurai, K. Bharathivelan, Cubic Lateral Ideals in Ternary Near - Rings, International Advanced Research Journal in Science, Engineering and Technology, Vol. 3, Issue11(November 2016) 209 - 215
  • [3] J.S.Golan, Semirings and their applications, Kluwer Academic Publishers,1999.
  • [4] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 6(1958) 321.
  • [5] K.Iizuka, On the Jacobson radical of semiring, Tohoku Math.J., Vol.11 No. 2(1959), 409-421
  • [6] Y.B. Jun, M.A.Ozt¨ urk, S.Z.Song,¨ On Fuzzy h-ideals in hemiring, Information sciences, 162(2004), 211-226.
  • [7] Y.B. Jun, S.T. Jung and M.S. Kim, Cubic subgroups, Annals of Fuzzy Mathematics and Informatics, 2(2011), 9 - 15.
  • [8] Y.B. Jun, C.S. Kim and K.O. Yang, Cubic sets, Annals of Fuzzy Mathematics and Informatics, 4(2012), 83 - 98.
  • [9] A. Khan, Y.B. Jun, S.I.A. Shah, M. Ali, Characterizations of hemirings in terms of cubic h-ideals, Soft Comput, DOI 10.1007/s00500-014-1396-4
  • [10] D.R.La Torre, On h-ideals and k-ideals in hemirings,Publ. Math. Debrecen 12(1965), 219-226.
  • [11] X.Ma, J.Zahn, Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Comput and Applic, 19(2010), 477-485
  • [12] D. Mandal, On Cubic h-ideals ofΓ-hemiring, Bull. Int. Math. Virtual Inst., Vol. 10, No.3, (2020), 567-579.
  • [13] S. K. Sardar, D. Mandal, On fuzzy h-ideals in h-regular Γ-hemiring and h-duo Γ-hemiring, Gen. Math. Notes, Vol. 2 No. 1,(2011), 64-85
  • [14] S.K.Sardar, D.Mandal, On fuzzy h-ideal in Γ-hemiring, Int. J. Pure. Appl. Math, Vol. 56, No. 3(2009),439-450
  • [15] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517
  • [16] L.A.Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Debabrata MANDAL
Raja Peary Mohan College, Uttarpara, Hooghly, India-712258
India

Publication Date December 22, 2020
Submission Date June 1, 2020
Acceptance Date December 17, 2020
Published in Issue Year 2020 Volume: 3 Issue: 4

Cite

Bibtex @research article { cams746503, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2020}, volume = {3}, number = {4}, pages = {218 - 224}, doi = {10.33434/cams.746503}, title = {Some Characterizations of \$h\$-Regular \$\\Gamma\$-Hemiring in terms of Cubic \$h\$-Ideals}, key = {cite}, author = {Mandal, Debabrata} }
APA Mandal, D. (2020). Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals . Communications in Advanced Mathematical Sciences , 3 (4) , 218-224 . DOI: 10.33434/cams.746503
MLA Mandal, D. "Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals" . Communications in Advanced Mathematical Sciences 3 (2020 ): 218-224 <https://dergipark.org.tr/en/pub/cams/issue/58497/746503>
Chicago Mandal, D. "Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals". Communications in Advanced Mathematical Sciences 3 (2020 ): 218-224
RIS TY - JOUR T1 - Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals AU - DebabrataMandal Y1 - 2020 PY - 2020 N1 - doi: 10.33434/cams.746503 DO - 10.33434/cams.746503 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 218 EP - 224 VL - 3 IS - 4 SN - 2651-4001- M3 - doi: 10.33434/cams.746503 UR - https://doi.org/10.33434/cams.746503 Y2 - 2020 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals %A Debabrata Mandal %T Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals %D 2020 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 3 %N 4 %R doi: 10.33434/cams.746503 %U 10.33434/cams.746503
ISNAD Mandal, Debabrata . "Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals". Communications in Advanced Mathematical Sciences 3 / 4 (December 2020): 218-224 . https://doi.org/10.33434/cams.746503
AMA Mandal D. Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals. Communications in Advanced Mathematical Sciences. 2020; 3(4): 218-224.
Vancouver Mandal D. Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals. Communications in Advanced Mathematical Sciences. 2020; 3(4): 218-224.
IEEE D. Mandal , "Some Characterizations of $h$-Regular $\Gamma$-Hemiring in terms of Cubic $h$-Ideals", Communications in Advanced Mathematical Sciences, vol. 3, no. 4, pp. 218-224, Dec. 2020, doi:10.33434/cams.746503
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.