[1] B. Aupetit, A Primer On Spectral Theory, Universitext, Springer-Verlag, 1991.
[2] H. Baumgartel, Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications,
15, Birkhauser, 1985.
[3] K. Clancy, I. Gohberg, Factorization of matrix functions and singular integral operators, Oper. Theory Adv. Appl., 3,
Birkhauser Verlag (Basel) 1981.
[4] J. Dieudonne, Sur un theoreme de Schwertfeger, Ann. Polon. Math. 24(1974), 87 - 88.
[5] J.C. Evard, Conditions for a vector subspace E(t) and for a projector P(t) not to depend on t: , Lin. Alg. Appl. 91(1987),
121-131.
[6] J. C. Evard, On matrix functions which commute with their derivative, Lin. Alg. Appl. 68(1985), 145 - 178.
[7] S. Goff, Hermitian function matrices which commute with their derivative, Lin. Alg. Appl. 36(1981), 33 - 40.
[8] I. Gohberg, J. Leiter, Holomorphic Operator Functions of one Variable and Applications, Oper. Theory Adv. Appl., 192,
2009.
[9] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of linear operators, 1, Birkhauser 1990.
[10] T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
[11] C.S. Kubrusly, Spectral Theory of Bounded Linear Operators, Birkhauser 2020.
[12] A. Maouche, Functional commutativity of analytic families of self adjoint compact operators on a Hilbert space, Commun.
Adv. Math. Sci., 3(1) (2020), 9 - 12.
[13] M. Reed, B. Simon, Modern Methods of Mathematical Physics, Academic Press, 1975.
[14] F. Rellich, Perturbation Theory of Eigenvalue Problems, Institute of Mathematical Sciences, New York, 1950.
[15] H. Schwertfeger, Sur les matrices permutables avec leur deriv´ee, Rend. Sem. Mat. Univ. Politec. Torino. 11(1952), 329 -
333.
Commutable Matrix-Valued Functions and Operator-Valued Functions
Year 2020,
Volume: 3 Issue: 4, 225 - 235, 22.12.2020
A simple expression is established for an analytic commutable matrix-valued function. Then a characterization of two by two functional commutative matrices is proven. Finally, a family of analytic normal compact operators on a Hilbert space, which commute with their derivatives, is shown to be functionally commutative.
[1] B. Aupetit, A Primer On Spectral Theory, Universitext, Springer-Verlag, 1991.
[2] H. Baumgartel, Analytic Perturbation Theory for Matrices and Operators, Operator Theory: Advances and Applications,
15, Birkhauser, 1985.
[3] K. Clancy, I. Gohberg, Factorization of matrix functions and singular integral operators, Oper. Theory Adv. Appl., 3,
Birkhauser Verlag (Basel) 1981.
[4] J. Dieudonne, Sur un theoreme de Schwertfeger, Ann. Polon. Math. 24(1974), 87 - 88.
[5] J.C. Evard, Conditions for a vector subspace E(t) and for a projector P(t) not to depend on t: , Lin. Alg. Appl. 91(1987),
121-131.
[6] J. C. Evard, On matrix functions which commute with their derivative, Lin. Alg. Appl. 68(1985), 145 - 178.
[7] S. Goff, Hermitian function matrices which commute with their derivative, Lin. Alg. Appl. 36(1981), 33 - 40.
[8] I. Gohberg, J. Leiter, Holomorphic Operator Functions of one Variable and Applications, Oper. Theory Adv. Appl., 192,
2009.
[9] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of linear operators, 1, Birkhauser 1990.
[10] T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.
[11] C.S. Kubrusly, Spectral Theory of Bounded Linear Operators, Birkhauser 2020.
[12] A. Maouche, Functional commutativity of analytic families of self adjoint compact operators on a Hilbert space, Commun.
Adv. Math. Sci., 3(1) (2020), 9 - 12.
[13] M. Reed, B. Simon, Modern Methods of Mathematical Physics, Academic Press, 1975.
[14] F. Rellich, Perturbation Theory of Eigenvalue Problems, Institute of Mathematical Sciences, New York, 1950.
[15] H. Schwertfeger, Sur les matrices permutables avec leur deriv´ee, Rend. Sem. Mat. Univ. Politec. Torino. 11(1952), 329 -
333.
Maouche, A. (2020). Commutable Matrix-Valued Functions and Operator-Valued Functions. Communications in Advanced Mathematical Sciences, 3(4), 225-235. https://doi.org/10.33434/cams.759336
AMA
Maouche A. Commutable Matrix-Valued Functions and Operator-Valued Functions. Communications in Advanced Mathematical Sciences. December 2020;3(4):225-235. doi:10.33434/cams.759336
Chicago
Maouche, Abdelaziz. “Commutable Matrix-Valued Functions and Operator-Valued Functions”. Communications in Advanced Mathematical Sciences 3, no. 4 (December 2020): 225-35. https://doi.org/10.33434/cams.759336.
EndNote
Maouche A (December 1, 2020) Commutable Matrix-Valued Functions and Operator-Valued Functions. Communications in Advanced Mathematical Sciences 3 4 225–235.
IEEE
A. Maouche, “Commutable Matrix-Valued Functions and Operator-Valued Functions”, Communications in Advanced Mathematical Sciences, vol. 3, no. 4, pp. 225–235, 2020, doi: 10.33434/cams.759336.
ISNAD
Maouche, Abdelaziz. “Commutable Matrix-Valued Functions and Operator-Valued Functions”. Communications in Advanced Mathematical Sciences 3/4 (December 2020), 225-235. https://doi.org/10.33434/cams.759336.
JAMA
Maouche A. Commutable Matrix-Valued Functions and Operator-Valued Functions. Communications in Advanced Mathematical Sciences. 2020;3:225–235.
MLA
Maouche, Abdelaziz. “Commutable Matrix-Valued Functions and Operator-Valued Functions”. Communications in Advanced Mathematical Sciences, vol. 3, no. 4, 2020, pp. 225-3, doi:10.33434/cams.759336.
Vancouver
Maouche A. Commutable Matrix-Valued Functions and Operator-Valued Functions. Communications in Advanced Mathematical Sciences. 2020;3(4):225-3.