Research Article
PDF BibTex RIS Cite

On Generalized Fibonacci Numbers

Year 2020, Volume: 3 Issue: 4, 186 - 202, 22.12.2020
https://doi.org/10.33434/cams.771023

Abstract

Fibonacci numbers and their polynomials have been generalized mainly by two ways: by maintaining the recurrence relation and varying the initial conditions, and by varying the recurrence relation and maintaining the initial conditions. In this paper, we introduce and derive various properties of $r$-sum Fibonacci numbers. The recurrence relation is maintained but initial conditions are varied. Among results obtained are Binet's formula, generating function, explicit sum formula, sum of first $n$ terms, sum of first $n$ terms with even indices, sum of first $n$ terms with odd indices, alternating sum of $n$ terms of $r-$sum Fibonacci sequence, Honsberger's identity, determinant identities and a generalized identity from which Cassini's identity, Catalan's identity and d'Ocagne's identity follow immediately.

Supporting Institution

Maseno University

References

  • [1] S. Falcon, A. Plaza, On the Fibonacci K-numbers, Chaos Solution Fractals, 32(5) (2007), 1615–1624.
  • [2] Y.K Gupta, M. Singh, O. Sikhwal, Generalized Fibonacci-Like sequence associated with Fibonacci and Lucas sequences, Turkish J. Anal. Number Theory, 2(6) (2014), 233–238.
  • [3] A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly, 68(1961), 455–459.
  • [4] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fib. Quart, 3(3) (1965),161–176.
  • [5] D. Kalma, R. Mena, The Fibonacci Numbers-Exposed, Math. Mag., 2 (2002).
  • [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wisley-Interscience Publications, New York, 2011.
  • [7] Y.K. Panwar, M. Singh, Certain properties of generalized Fibonacci sequence, Turkish J. Anal. Number Theory, 2(1) (2014), 6–8.
  • [8] G.P.S Rathore, O. Sikhwal, R. Choudhary, Generalized Fibonacci-like sequence and some identities, SCIREA J. Math., 1(1)(2016), 107–118.
  • [9] O. Sikhwal, Y. Vyas, Generalized Fibonacci-type sequence and its Properties, Int. J. Sci. Res., 5(12) (2016), 2043–2047.
  • [10] B. Singh, S. Bhatnagar, Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci., 5(18) (2010), 859–868.
  • [11] B. Singh, S. Bhatnagar, O. Sikhwal, Fibonacci-like sequence, Int. J. Adv. Math. Sci., 1(3)(2013), 145–151.
  • [12] M. Singh, Y. Gupta, O. Sikhwal, Identities of generalized Fibonacci-like sequence, Turkish J. Anal. Number Theory, 2(5) (2014), 170–175.
  • [13] B. Singh, O. Sikhwal, Y. K Gupta, Generalized Fibonacci-Lucas sequence, Turkish J. Anal. Number Theory, 2(6)(2014), 193–197.
  • [14] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences (OEIS), Available at http://oeis.org.
  • [15] A. Wani, G. P. S. Rathore, K. Sisodiya, On the properties of Fibonacci-Like sequence, Int. J. Math. Trends Tech., 29(2) (2016), 80–86.

Year 2020, Volume: 3 Issue: 4, 186 - 202, 22.12.2020
https://doi.org/10.33434/cams.771023

Abstract

References

  • [1] S. Falcon, A. Plaza, On the Fibonacci K-numbers, Chaos Solution Fractals, 32(5) (2007), 1615–1624.
  • [2] Y.K Gupta, M. Singh, O. Sikhwal, Generalized Fibonacci-Like sequence associated with Fibonacci and Lucas sequences, Turkish J. Anal. Number Theory, 2(6) (2014), 233–238.
  • [3] A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly, 68(1961), 455–459.
  • [4] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fib. Quart, 3(3) (1965),161–176.
  • [5] D. Kalma, R. Mena, The Fibonacci Numbers-Exposed, Math. Mag., 2 (2002).
  • [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wisley-Interscience Publications, New York, 2011.
  • [7] Y.K. Panwar, M. Singh, Certain properties of generalized Fibonacci sequence, Turkish J. Anal. Number Theory, 2(1) (2014), 6–8.
  • [8] G.P.S Rathore, O. Sikhwal, R. Choudhary, Generalized Fibonacci-like sequence and some identities, SCIREA J. Math., 1(1)(2016), 107–118.
  • [9] O. Sikhwal, Y. Vyas, Generalized Fibonacci-type sequence and its Properties, Int. J. Sci. Res., 5(12) (2016), 2043–2047.
  • [10] B. Singh, S. Bhatnagar, Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci., 5(18) (2010), 859–868.
  • [11] B. Singh, S. Bhatnagar, O. Sikhwal, Fibonacci-like sequence, Int. J. Adv. Math. Sci., 1(3)(2013), 145–151.
  • [12] M. Singh, Y. Gupta, O. Sikhwal, Identities of generalized Fibonacci-like sequence, Turkish J. Anal. Number Theory, 2(5) (2014), 170–175.
  • [13] B. Singh, O. Sikhwal, Y. K Gupta, Generalized Fibonacci-Lucas sequence, Turkish J. Anal. Number Theory, 2(6)(2014), 193–197.
  • [14] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences (OEIS), Available at http://oeis.org.
  • [15] A. Wani, G. P. S. Rathore, K. Sisodiya, On the properties of Fibonacci-Like sequence, Int. J. Math. Trends Tech., 29(2) (2016), 80–86.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fidel ODUOL This is me
Maseno University
0000-0002-1228-6339
Kenya


Isaac Owino OKOTH
Maseno University
Kenya

Publication Date December 22, 2020
Submission Date July 17, 2020
Acceptance Date September 29, 2020
Published in Issue Year 2020 Volume: 3 Issue: 4

Cite

Bibtex @research article { cams771023, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2020}, volume = {3}, number = {4}, pages = {186 - 202}, doi = {10.33434/cams.771023}, title = {On Generalized Fibonacci Numbers}, key = {cite}, author = {Oduol, Fidel and Okoth, Isaac Owino} }
APA Oduol, F. & Okoth, I. O. (2020). On Generalized Fibonacci Numbers . Communications in Advanced Mathematical Sciences , 3 (4) , 186-202 . DOI: 10.33434/cams.771023
MLA Oduol, F. , Okoth, I. O. "On Generalized Fibonacci Numbers" . Communications in Advanced Mathematical Sciences 3 (2020 ): 186-202 <https://dergipark.org.tr/en/pub/cams/issue/58497/771023>
Chicago Oduol, F. , Okoth, I. O. "On Generalized Fibonacci Numbers". Communications in Advanced Mathematical Sciences 3 (2020 ): 186-202
RIS TY - JOUR T1 - On Generalized Fibonacci Numbers AU - FidelOduol, Isaac OwinoOkoth Y1 - 2020 PY - 2020 N1 - doi: 10.33434/cams.771023 DO - 10.33434/cams.771023 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 186 EP - 202 VL - 3 IS - 4 SN - 2651-4001- M3 - doi: 10.33434/cams.771023 UR - https://doi.org/10.33434/cams.771023 Y2 - 2020 ER -
EndNote %0 Communications in Advanced Mathematical Sciences On Generalized Fibonacci Numbers %A Fidel Oduol , Isaac Owino Okoth %T On Generalized Fibonacci Numbers %D 2020 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 3 %N 4 %R doi: 10.33434/cams.771023 %U 10.33434/cams.771023
ISNAD Oduol, Fidel , Okoth, Isaac Owino . "On Generalized Fibonacci Numbers". Communications in Advanced Mathematical Sciences 3 / 4 (December 2020): 186-202 . https://doi.org/10.33434/cams.771023
AMA Oduol F. , Okoth I. O. On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences. 2020; 3(4): 186-202.
Vancouver Oduol F. , Okoth I. O. On Generalized Fibonacci Numbers. Communications in Advanced Mathematical Sciences. 2020; 3(4): 186-202.
IEEE F. Oduol and I. O. Okoth , "On Generalized Fibonacci Numbers", Communications in Advanced Mathematical Sciences, vol. 3, no. 4, pp. 186-202, Dec. 2020, doi:10.33434/cams.771023
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.