Conference Paper
PDF BibTex RIS Cite

On Noncrossing and Plane Tree-Like Structures

Year 2021, Volume: 4 Issue: 2, 89 - 99, 30.06.2021
https://doi.org/10.33434/cams.803065

Abstract

Mathematical trees are connected graphs without cycles, loops and multiple edges. Various trees such as Cayley trees, plane trees, binary trees, $d$-ary trees, noncrossing trees among others have been studied extensively. Tree-like structures such as Husimi graphs and cacti are graphs which posses the conditions for trees if, instead of vertices, we consider their blocks. In this paper, we use generating functions and bijections to find formulas for the number of noncrossing Husimi graphs, noncrossing cacti and noncrossing oriented cacti. We extend the work to obtain formulas for the number of bicoloured noncrossing Husimi graphs, bicoloured noncrossing cacti and bicoloured noncrossing oriented cacti. Finally, we enumerate plane Husimi graphs, plane cacti and plane oriented cacti according to number of blocks, block types and leaves.

Supporting Institution

Maseno University

Thanks

We thenk DergiPark for allowing us to publish in your journal.

References

  • [1] M. B´ona, M. Bousquet, G. Labelle, P. Leroux, Enumeration of m-ary cacti, Adv. Appl. Math., 24 (1) (2000), 22-56.
  • [2] P. Flajolet, M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204 (1-3) (1999), 203-229.
  • [3] G. W. Ford, G. E. Uhlenbeck, Combinatorial Problems in the Theory of Graphs, I, Proc. Nat. Acad. Sciences, 42 (1956), 122-128.
  • [4] F. Harary, G. E. Uhlenbeck, On the number of Husimi trees, Proc. Nat. Aca. Sci., 39 (1953), 315-322.
  • [5] K. Husimi, Note on Mayers’ theory of cluster integrals, J. Chem. Phys., 18 (1950), 682-684.
  • [6] S. Kim, S. Seo, H. Shin, Refined enumeration of vertices among all rooted rooted d-trees, (2018), arXiv:1806.06417.
  • [7] P. Leroux. Enumerative problems inspired by Mayer’s theory of cluster integrals, Electron. J. Combin., 11 (2004).
  • [8] J. E. Mayer, Equilibrium Statistical Mechanics, The international encyclopedia of physical chemistry and chemical physics, Pergamon Press, Oxford, 1968.
  • [9] M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180 (1-3) (1998), 301-313.
  • [10] I. O. Okoth, Combinatorics of oriented trees and tree-like structures, PhD Thesis, Stellenbosch University, 2015.
  • [11] J. H. Przytycki, A. S. Sikora, Polygon Dissections and Euler, Fuss, Kirkman, and Cayley Numbers, J. Combin. Theory, Ser. A, 92 (1) (2000), 68-76.
  • [12] C. Springer, Factorizations, Trees, and Cacti, Proceedings of the Eighth International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), University of Minnesota,(1996), 427-438.
  • [13] R. P. Stanley. Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • [14] E. Tzanaki, Polygon dissections and some generalizations of cluster complexes, J. Combin. Theory, Ser. A, 113(6) (2006), 1189-1198.

Year 2021, Volume: 4 Issue: 2, 89 - 99, 30.06.2021
https://doi.org/10.33434/cams.803065

Abstract

References

  • [1] M. B´ona, M. Bousquet, G. Labelle, P. Leroux, Enumeration of m-ary cacti, Adv. Appl. Math., 24 (1) (2000), 22-56.
  • [2] P. Flajolet, M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204 (1-3) (1999), 203-229.
  • [3] G. W. Ford, G. E. Uhlenbeck, Combinatorial Problems in the Theory of Graphs, I, Proc. Nat. Acad. Sciences, 42 (1956), 122-128.
  • [4] F. Harary, G. E. Uhlenbeck, On the number of Husimi trees, Proc. Nat. Aca. Sci., 39 (1953), 315-322.
  • [5] K. Husimi, Note on Mayers’ theory of cluster integrals, J. Chem. Phys., 18 (1950), 682-684.
  • [6] S. Kim, S. Seo, H. Shin, Refined enumeration of vertices among all rooted rooted d-trees, (2018), arXiv:1806.06417.
  • [7] P. Leroux. Enumerative problems inspired by Mayer’s theory of cluster integrals, Electron. J. Combin., 11 (2004).
  • [8] J. E. Mayer, Equilibrium Statistical Mechanics, The international encyclopedia of physical chemistry and chemical physics, Pergamon Press, Oxford, 1968.
  • [9] M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180 (1-3) (1998), 301-313.
  • [10] I. O. Okoth, Combinatorics of oriented trees and tree-like structures, PhD Thesis, Stellenbosch University, 2015.
  • [11] J. H. Przytycki, A. S. Sikora, Polygon Dissections and Euler, Fuss, Kirkman, and Cayley Numbers, J. Combin. Theory, Ser. A, 92 (1) (2000), 68-76.
  • [12] C. Springer, Factorizations, Trees, and Cacti, Proceedings of the Eighth International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), University of Minnesota,(1996), 427-438.
  • [13] R. P. Stanley. Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • [14] E. Tzanaki, Polygon dissections and some generalizations of cluster complexes, J. Combin. Theory, Ser. A, 113(6) (2006), 1189-1198.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Isaac Owino OKOTH
Maseno University
Kenya

Publication Date June 30, 2021
Submission Date September 30, 2020
Acceptance Date June 14, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

Bibtex @conference paper { cams803065, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2021}, volume = {4}, number = {2}, pages = {89 - 99}, doi = {10.33434/cams.803065}, title = {On Noncrossing and Plane Tree-Like Structures}, key = {cite}, author = {Okoth, Isaac Owino} }
APA Okoth, I. O. (2021). On Noncrossing and Plane Tree-Like Structures . Communications in Advanced Mathematical Sciences , 4 (2) , 89-99 . DOI: 10.33434/cams.803065
MLA Okoth, I. O. "On Noncrossing and Plane Tree-Like Structures" . Communications in Advanced Mathematical Sciences 4 (2021 ): 89-99 <https://dergipark.org.tr/en/pub/cams/issue/63405/803065>
Chicago Okoth, I. O. "On Noncrossing and Plane Tree-Like Structures". Communications in Advanced Mathematical Sciences 4 (2021 ): 89-99
RIS TY - JOUR T1 - On Noncrossing and Plane Tree-Like Structures AU - Isaac OwinoOkoth Y1 - 2021 PY - 2021 N1 - doi: 10.33434/cams.803065 DO - 10.33434/cams.803065 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 89 EP - 99 VL - 4 IS - 2 SN - 2651-4001- M3 - doi: 10.33434/cams.803065 UR - https://doi.org/10.33434/cams.803065 Y2 - 2021 ER -
EndNote %0 Communications in Advanced Mathematical Sciences On Noncrossing and Plane Tree-Like Structures %A Isaac Owino Okoth %T On Noncrossing and Plane Tree-Like Structures %D 2021 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 4 %N 2 %R doi: 10.33434/cams.803065 %U 10.33434/cams.803065
ISNAD Okoth, Isaac Owino . "On Noncrossing and Plane Tree-Like Structures". Communications in Advanced Mathematical Sciences 4 / 2 (June 2021): 89-99 . https://doi.org/10.33434/cams.803065
AMA Okoth I. O. On Noncrossing and Plane Tree-Like Structures. Communications in Advanced Mathematical Sciences. 2021; 4(2): 89-99.
Vancouver Okoth I. O. On Noncrossing and Plane Tree-Like Structures. Communications in Advanced Mathematical Sciences. 2021; 4(2): 89-99.
IEEE I. O. Okoth , "On Noncrossing and Plane Tree-Like Structures", Communications in Advanced Mathematical Sciences, vol. 4, no. 2, pp. 89-99, Jun. 2021, doi:10.33434/cams.803065
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.