Research Article
PDF BibTex RIS Cite

Year 2021, Volume: 4 Issue: 3, 150 - 162, 30.09.2021
https://doi.org/10.33434/cams.938775

Abstract

References

  • [1] M.R.S. Kulenovic ́, M. Nurkanovic ́, Global asymptotic behavior of a two dimensional system of difference equations modeling cooperation, J. Differ. Equations Appl., 9 (1) (2003), 149-159.
  • [2] S. Kalabusic ́, M.R.S. Kulenovic ́, Dynamics of certain anti-competitive systems of rational difference equations in the plane, J. Difference Equ. Appl., 17 (11)(2011), 1599-1615.
  • [3] Q. Din, T. F. Ibrahim, K. A. Khan, Behavior of a competitive system of second-order difference equations, Scientific World J., (2014), doi:10.1155/2014/283982.
  • [4] M.N. Phong, Global behavior of a system of rational difference equations, Comm. App. Nonlinear Anal., 23(3)(2016), pp. 93-107.
  • [5] M.R.S. Kulenovic ́, O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman& Hall/CRC, Boca Raton, Fla, USA, 2002.
  • [6] E. Camouzis, G. Ladas, Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/ CRC, Boca Raton, London, 2008.
  • [7] R. P. Agarwal, Difference Equations and Inequalities, Second Ed. Dekker, New York, 1992, 2000.
  • [8] L. Berg, S. Stevic ́, On some systems of difference equations, Appl. Math. Comput., 218 (2011), 1713-1718.
  • [9] DZ. Burgic ́, Z. Nurkanovic ́, An example of globally asymptotically stable anti-monotonic system of rational difference equations in the plane, Sarajevo Journal of Mathematics, 5 (18) (2009), 235-245.
  • [10] Q. Din, Dynamics of a discrete Lotka-Volterra model, Adv. Difference Equ., (2013), doi:10.1186/1687-1847-2013-95.
  • [11] Y. Enatsu, Y. Nakata, Y. Muroya, Global stability for a class of discrete SIR epidemic models, Mathematical Biosciences and Engineering, 7 (2010), 347-361.
  • [12] V.V. Khuong, M.N. Phong, A note on boundedness, periodic nature and positive nonoscilatory solution of rational difference equation, PanAmer. Math. J., 20(2)(2010), pp. 53-65.
  • [13] V.V. Khuong, M.N. Phong, A note on global behavior of solutions and positive nonoscillatory solution of a difference equation, Comm. App. Nonlinear Anal., 18(4)(2011), pp. 77-88.
  • [14] V.L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, Dordrecht, 1993.
  • [15] M.R.S. Kulenovic ́, G.Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjec- tures, Chapman and Hall/ CRC, Boca Raton, London, 2001.
  • [16] M. R. S. Kulenovic ́, Z. Nurkanovic ́, The rate of convergence of solution of a three dimensional linear fractional systems of difference equations, Zbornik radova PMF Tuzla - Svezak Matematika, 2 (2005), 1-6.
  • [17] M. R. S. Kulenovic ́, M. Nurkanovic ́, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ., (2006), Art. ID 19756, 13pp.
  • [18] M. Pituk, More on Poincare’s and Peron’s theorems for difference equations, J. Difference Equ. Appl., 8 (2002), 201-216.
  • [19] S.Stevic, Boundedness and persistence of some cyclic-type systems of difference equations, Appl. Math. Lett., 56 (2016), 78-85.
  • [20] S. Stevic, New class of solvable systems of difference equations, Appl. Math. Lett., 63 (2017), 137-144 .
  • [21] S. Stevic, B. Iricanin, Z. Smarda, On a symmetric bilinear system of difference equations, Appl. Math. Lett., 89 (2019), 15-21.
  • [22] E.Tas ̧demir, On the global asymptotic stability of a system of difference equations with quadratic terms, J. Appl. Math. Comput., 66 (2021), 423–437.

Global Behavior of a System of Second-Order Rational Difference Equations

Year 2021, Volume: 4 Issue: 3, 150 - 162, 30.09.2021
https://doi.org/10.33434/cams.938775

Abstract

In this paper, we consider the following system of rational difference equations
xn+1=a+xnb+cyn+dxn1
, yn+1=α+ynβ+γxn+ηyn1
, n=0,1,2,...xn+1=a+xnb+cyn+dxn−1, yn+1=α+ynβ+γxn+ηyn−1, n=0,1,2,...
where a,b,c,d,α,β,γ,η(0,)a,b,c,d,α,β,γ,η∈(0,∞) and the initial values x1,x0,y1,y0(0,)x−1,x0,y−1,y0∈(0,∞). Our main aim is to investigate the local asymptotic stability and global stability of equilibrium points, and the rate of convergence of positive solutions of the system.

References

  • [1] M.R.S. Kulenovic ́, M. Nurkanovic ́, Global asymptotic behavior of a two dimensional system of difference equations modeling cooperation, J. Differ. Equations Appl., 9 (1) (2003), 149-159.
  • [2] S. Kalabusic ́, M.R.S. Kulenovic ́, Dynamics of certain anti-competitive systems of rational difference equations in the plane, J. Difference Equ. Appl., 17 (11)(2011), 1599-1615.
  • [3] Q. Din, T. F. Ibrahim, K. A. Khan, Behavior of a competitive system of second-order difference equations, Scientific World J., (2014), doi:10.1155/2014/283982.
  • [4] M.N. Phong, Global behavior of a system of rational difference equations, Comm. App. Nonlinear Anal., 23(3)(2016), pp. 93-107.
  • [5] M.R.S. Kulenovic ́, O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman& Hall/CRC, Boca Raton, Fla, USA, 2002.
  • [6] E. Camouzis, G. Ladas, Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/ CRC, Boca Raton, London, 2008.
  • [7] R. P. Agarwal, Difference Equations and Inequalities, Second Ed. Dekker, New York, 1992, 2000.
  • [8] L. Berg, S. Stevic ́, On some systems of difference equations, Appl. Math. Comput., 218 (2011), 1713-1718.
  • [9] DZ. Burgic ́, Z. Nurkanovic ́, An example of globally asymptotically stable anti-monotonic system of rational difference equations in the plane, Sarajevo Journal of Mathematics, 5 (18) (2009), 235-245.
  • [10] Q. Din, Dynamics of a discrete Lotka-Volterra model, Adv. Difference Equ., (2013), doi:10.1186/1687-1847-2013-95.
  • [11] Y. Enatsu, Y. Nakata, Y. Muroya, Global stability for a class of discrete SIR epidemic models, Mathematical Biosciences and Engineering, 7 (2010), 347-361.
  • [12] V.V. Khuong, M.N. Phong, A note on boundedness, periodic nature and positive nonoscilatory solution of rational difference equation, PanAmer. Math. J., 20(2)(2010), pp. 53-65.
  • [13] V.V. Khuong, M.N. Phong, A note on global behavior of solutions and positive nonoscillatory solution of a difference equation, Comm. App. Nonlinear Anal., 18(4)(2011), pp. 77-88.
  • [14] V.L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, Dordrecht, 1993.
  • [15] M.R.S. Kulenovic ́, G.Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjec- tures, Chapman and Hall/ CRC, Boca Raton, London, 2001.
  • [16] M. R. S. Kulenovic ́, Z. Nurkanovic ́, The rate of convergence of solution of a three dimensional linear fractional systems of difference equations, Zbornik radova PMF Tuzla - Svezak Matematika, 2 (2005), 1-6.
  • [17] M. R. S. Kulenovic ́, M. Nurkanovic ́, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ., (2006), Art. ID 19756, 13pp.
  • [18] M. Pituk, More on Poincare’s and Peron’s theorems for difference equations, J. Difference Equ. Appl., 8 (2002), 201-216.
  • [19] S.Stevic, Boundedness and persistence of some cyclic-type systems of difference equations, Appl. Math. Lett., 56 (2016), 78-85.
  • [20] S. Stevic, New class of solvable systems of difference equations, Appl. Math. Lett., 63 (2017), 137-144 .
  • [21] S. Stevic, B. Iricanin, Z. Smarda, On a symmetric bilinear system of difference equations, Appl. Math. Lett., 89 (2019), 15-21.
  • [22] E.Tas ̧demir, On the global asymptotic stability of a system of difference equations with quadratic terms, J. Appl. Math. Comput., 66 (2021), 423–437.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Phong MAİ NAM
Department of Mathematical Analysis, Faculty of Basic Sciences, University of Transport and Communications
Vietnam

Publication Date September 30, 2021
Submission Date May 18, 2021
Acceptance Date July 7, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

Bibtex @research article { cams938775, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2021}, volume = {4}, number = {3}, pages = {150 - 162}, doi = {10.33434/cams.938775}, title = {Global Behavior of a System of Second-Order Rational Difference Equations}, key = {cite}, author = {Mai Nam, Phong} }
APA Mai Nam, P. (2021). Global Behavior of a System of Second-Order Rational Difference Equations . Communications in Advanced Mathematical Sciences , 4 (3) , 150-162 . DOI: 10.33434/cams.938775
MLA Mai Nam, P. "Global Behavior of a System of Second-Order Rational Difference Equations" . Communications in Advanced Mathematical Sciences 4 (2021 ): 150-162 <https://dergipark.org.tr/en/pub/cams/issue/65244/938775>
Chicago Mai Nam, P. "Global Behavior of a System of Second-Order Rational Difference Equations". Communications in Advanced Mathematical Sciences 4 (2021 ): 150-162
RIS TY - JOUR T1 - Global Behavior of a System of Second-Order Rational Difference Equations AU - PhongMai Nam Y1 - 2021 PY - 2021 N1 - doi: 10.33434/cams.938775 DO - 10.33434/cams.938775 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 150 EP - 162 VL - 4 IS - 3 SN - 2651-4001- M3 - doi: 10.33434/cams.938775 UR - https://doi.org/10.33434/cams.938775 Y2 - 2021 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Global Behavior of a System of Second-Order Rational Difference Equations %A Phong Mai Nam %T Global Behavior of a System of Second-Order Rational Difference Equations %D 2021 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 4 %N 3 %R doi: 10.33434/cams.938775 %U 10.33434/cams.938775
ISNAD Mai Nam, Phong . "Global Behavior of a System of Second-Order Rational Difference Equations". Communications in Advanced Mathematical Sciences 4 / 3 (September 2021): 150-162 . https://doi.org/10.33434/cams.938775
AMA Mai Nam P. Global Behavior of a System of Second-Order Rational Difference Equations. Communications in Advanced Mathematical Sciences. 2021; 4(3): 150-162.
Vancouver Mai Nam P. Global Behavior of a System of Second-Order Rational Difference Equations. Communications in Advanced Mathematical Sciences. 2021; 4(3): 150-162.
IEEE P. Mai Nam , "Global Behavior of a System of Second-Order Rational Difference Equations", Communications in Advanced Mathematical Sciences, vol. 4, no. 3, pp. 150-162, Sep. 2021, doi:10.33434/cams.938775
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.