Research Article
BibTex RIS Cite

Some Relations between Stieltjes Transform and Hankel Transform with Applications

Year 2023, Volume: 6 Issue: 1, 60 - 66, 31.03.2023
https://doi.org/10.33434/cams.1223523

Abstract

In the present paper four theorems connecting Stieltjes transform and Hankel transform are established. The theorems are general in nature. Four integral formulae involving special functions are obtained with the help of these theorems. Otherwise it is very difficult to evaluate such type of integrals. Other several integrals may be evaluated with the help of these theorems.

Supporting Institution

There is no supporting institution

Project Number

Nil

References

  • [1] B. R. Bhonsle, A relation between Laplace and Hankel transforms, Proc. Glasgow Math. Assoc., 5(3) (1962), 114-115.
  • [2] B. R. Bhonsle, A relation between Laplace and Hankel transforms, Math. Japon., 10 (1965), 84-89.
  • [3] A. Erde ́lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill Book Company, New York, 1953.
  • [4] A. Erde ́lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, vol. II, McGraw-Hill Book Company, New York, 1954.
  • [5] K. C. Sharma, Theorems relating Hankel and Meijer’s Bessel transforms, Proc. Glasgow Math. Assoc., 6 (1963), 107–112.
  • [6] K. C. Gupta, S. M. Agrawal, Unified theorems involving H-function transform and Meijer Bessel function transform, Proc. Indian Acad. Sci. (Math. Sci.), 96 (2) (1987), 125-130.
  • [7] S. P . Goyal, S. K. Vasishta, Certain relations between generalized Kontorovitch-Lebdev transform and H-function transform, Ranchi Univ. Math. Jour., 6 (1975), 95-102.
  • [8] S. P. Goyal, R. M. Jain, Certain results for two-dimensional Laplace transform with applications, Proc. Nat. Acad. Sci. India, 59(A) (III) (1989), 407-414.
  • [9] L. Landau, Monotonicity and bounds for Bessel functions, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, California: June 11-13, 1999) (Warchall. H, Editor), Electron J. Differential Equations, Conf. Vol. 04(2000), 147-154.
  • [10] L. J. Landau, Bessel functions: Monotonicity and bounds, Journal of the London Mathematical Society, 61(1)(2000), 197-215.
  • [11] A. P. Prudnikov, Yu. A. Brychkov, O. I, Marichev, Integrals and Series: Volume 2. Elementary Functions, Gordon and Breach Science Publishers, New York, 1986.
  • [12] A. P. Prudnikov, Yu. A. Brychkov, O. I, Marichev, Integrals and Series: Volume 2. Special Functions, Gordon and Breach Science Publishers, New York, 1986.
  • [13] I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.
  • [14] R. K. Saxena, A relation between generalized Laplace and Hankel transforms, Math. Zeitschr., 81 (1963), 414-415
  • [15] H. M. Srivastava, A relation between Meijer and generalized Hankel transforms, Math. Japon., 11 (1966), 11-13.
  • [16] H. M. Srivastava, On a relation between Laplace and Hankel transforms, Matematiche (Catania), 21 (1966), 199-202.
  • [17] H. M. Srivastava, O. D. Vyas, A theorem relating generalized Hankel and Whittaker transforms, Indagationes Mathematicae (Proceedings), 72(2) (1969), 140-144.
  • [18] H. M. Srivastava, Some remarks on a generalization of the Stieltjes transform, Publ. Math. Debrecen, 23 (1976), 119-122.
  • [19] H. M. Srivastava, V. K. Tuan, A new convolution theorem for the Stieltjes transform & its application to a class of singular integral equations, Arch. Math. (Basel) 64(2) (1995), 144-149.
  • [20] H.M.Srivastava,O.Yu ̈rekli,AtheoremonaStieltjes-typeintegraltransform&itsapplications,ComplexVariables, Theory Appl., 28(2) (1995), 159-168.
  • [21] S. Yakubovich, M. Martins, On the iterated Stieltjes transform & its convolution with application to singular integral equations, Integral Transforms Spec. Funct., 25(5) (2013), doi: 10.1080/10652469.2013.868457
Year 2023, Volume: 6 Issue: 1, 60 - 66, 31.03.2023
https://doi.org/10.33434/cams.1223523

Abstract

Project Number

Nil

References

  • [1] B. R. Bhonsle, A relation between Laplace and Hankel transforms, Proc. Glasgow Math. Assoc., 5(3) (1962), 114-115.
  • [2] B. R. Bhonsle, A relation between Laplace and Hankel transforms, Math. Japon., 10 (1965), 84-89.
  • [3] A. Erde ́lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill Book Company, New York, 1953.
  • [4] A. Erde ́lyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, vol. II, McGraw-Hill Book Company, New York, 1954.
  • [5] K. C. Sharma, Theorems relating Hankel and Meijer’s Bessel transforms, Proc. Glasgow Math. Assoc., 6 (1963), 107–112.
  • [6] K. C. Gupta, S. M. Agrawal, Unified theorems involving H-function transform and Meijer Bessel function transform, Proc. Indian Acad. Sci. (Math. Sci.), 96 (2) (1987), 125-130.
  • [7] S. P . Goyal, S. K. Vasishta, Certain relations between generalized Kontorovitch-Lebdev transform and H-function transform, Ranchi Univ. Math. Jour., 6 (1975), 95-102.
  • [8] S. P. Goyal, R. M. Jain, Certain results for two-dimensional Laplace transform with applications, Proc. Nat. Acad. Sci. India, 59(A) (III) (1989), 407-414.
  • [9] L. Landau, Monotonicity and bounds for Bessel functions, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, California: June 11-13, 1999) (Warchall. H, Editor), Electron J. Differential Equations, Conf. Vol. 04(2000), 147-154.
  • [10] L. J. Landau, Bessel functions: Monotonicity and bounds, Journal of the London Mathematical Society, 61(1)(2000), 197-215.
  • [11] A. P. Prudnikov, Yu. A. Brychkov, O. I, Marichev, Integrals and Series: Volume 2. Elementary Functions, Gordon and Breach Science Publishers, New York, 1986.
  • [12] A. P. Prudnikov, Yu. A. Brychkov, O. I, Marichev, Integrals and Series: Volume 2. Special Functions, Gordon and Breach Science Publishers, New York, 1986.
  • [13] I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.
  • [14] R. K. Saxena, A relation between generalized Laplace and Hankel transforms, Math. Zeitschr., 81 (1963), 414-415
  • [15] H. M. Srivastava, A relation between Meijer and generalized Hankel transforms, Math. Japon., 11 (1966), 11-13.
  • [16] H. M. Srivastava, On a relation between Laplace and Hankel transforms, Matematiche (Catania), 21 (1966), 199-202.
  • [17] H. M. Srivastava, O. D. Vyas, A theorem relating generalized Hankel and Whittaker transforms, Indagationes Mathematicae (Proceedings), 72(2) (1969), 140-144.
  • [18] H. M. Srivastava, Some remarks on a generalization of the Stieltjes transform, Publ. Math. Debrecen, 23 (1976), 119-122.
  • [19] H. M. Srivastava, V. K. Tuan, A new convolution theorem for the Stieltjes transform & its application to a class of singular integral equations, Arch. Math. (Basel) 64(2) (1995), 144-149.
  • [20] H.M.Srivastava,O.Yu ̈rekli,AtheoremonaStieltjes-typeintegraltransform&itsapplications,ComplexVariables, Theory Appl., 28(2) (1995), 159-168.
  • [21] S. Yakubovich, M. Martins, On the iterated Stieltjes transform & its convolution with application to singular integral equations, Integral Transforms Spec. Funct., 25(5) (2013), doi: 10.1080/10652469.2013.868457
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Virendra Kumar 0000-0003-3597-1571

Project Number Nil
Publication Date March 31, 2023
Submission Date December 23, 2022
Acceptance Date March 29, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Kumar, V. (2023). Some Relations between Stieltjes Transform and Hankel Transform with Applications. Communications in Advanced Mathematical Sciences, 6(1), 60-66. https://doi.org/10.33434/cams.1223523
AMA Kumar V. Some Relations between Stieltjes Transform and Hankel Transform with Applications. Communications in Advanced Mathematical Sciences. March 2023;6(1):60-66. doi:10.33434/cams.1223523
Chicago Kumar, Virendra. “Some Relations Between Stieltjes Transform and Hankel Transform With Applications”. Communications in Advanced Mathematical Sciences 6, no. 1 (March 2023): 60-66. https://doi.org/10.33434/cams.1223523.
EndNote Kumar V (March 1, 2023) Some Relations between Stieltjes Transform and Hankel Transform with Applications. Communications in Advanced Mathematical Sciences 6 1 60–66.
IEEE V. Kumar, “Some Relations between Stieltjes Transform and Hankel Transform with Applications”, Communications in Advanced Mathematical Sciences, vol. 6, no. 1, pp. 60–66, 2023, doi: 10.33434/cams.1223523.
ISNAD Kumar, Virendra. “Some Relations Between Stieltjes Transform and Hankel Transform With Applications”. Communications in Advanced Mathematical Sciences 6/1 (March 2023), 60-66. https://doi.org/10.33434/cams.1223523.
JAMA Kumar V. Some Relations between Stieltjes Transform and Hankel Transform with Applications. Communications in Advanced Mathematical Sciences. 2023;6:60–66.
MLA Kumar, Virendra. “Some Relations Between Stieltjes Transform and Hankel Transform With Applications”. Communications in Advanced Mathematical Sciences, vol. 6, no. 1, 2023, pp. 60-66, doi:10.33434/cams.1223523.
Vancouver Kumar V. Some Relations between Stieltjes Transform and Hankel Transform with Applications. Communications in Advanced Mathematical Sciences. 2023;6(1):60-6.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..