Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection
Year 2024,
Volume: 7 Issue: 4, 220 - 228, 31.12.2024
Pushpa Bora
,
Jaya Upreti
,
Shankar Kumar
Abstract
The following research investigates various types of soliton of NC (Nearly Cosymplectic) manifolds with SVK (Schouten-van Kampen) connections, which are steady, shrinking, or expanding. Further, we investigate the geometric characteristics of Ricci solitons, Yamabe solitons, $\eta$-ricci soliton etc. We also study the curvature features of the SVK connection on an NC manifold. In addition, an example is developed to demonstrate the results.
Project Number
DST/WISE-PhD/PM/2023/6(G)
Thanks
The author acknowledges the Department of Science & Technology, Government of India, for financial support vide reference no DST/WISE-PhD/PM/2023/6(Gunder 'WISE FELLOWSHIP for Ph.D.' to carry out this work.
References
- [1] A. Bejancu, H. R. Farran, Foliations and Geometric Structures, Springer Science and Business Media, (580) (2006).
- [2] A. Dündar, N. Aktan, Some results on nearly cosymplectic manifolds, Univ. J. Math. Appl., 2(4) (2019), 218-223.
- [3] R. Kundu, A. Das, A. Biswas, Conformal Ricci soliton in Sasakian manifolds admitting general connection, J. Hyperstruct., 13(1) (2024), 46-61.
- [4] S. Sundriyal, J. Upreti, Solitons on Para-Sasakian manifold with respect to the Schouten-Van Kampen connection, Ganita Vol., 73(1) (2023), 25-33.
- [5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-Van Kampen connection, Publications de l’Institut Mathematique, 102(116) (2017), 93-105.
- [6] G. Ghosh, On Schouten-Van Kampen connection in Sasakian manifolds, Boletim da Sociedade Paranaense de Mathematica, 36 (2018), 171-182.
- [7] M. Altunbaş, Some characterizations of hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection, Istanbul J. Math., 2(1) (2024), 28-32.
- [8] D. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math., 39(2) (1971), 285-292.
- [9] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tˆohoku Math. J., Second Series, 61(2) (2009), 205-212.
- [10] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17(2) (1982), 255-306.
- [11] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71, (1988) 237-261.
- [12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159 (2002).
- [13] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109 (2003).
- [14] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl., 3(4) (1993), 301-307.
- [15] K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bull. Transilv. Univ. Bras¸ov Ser. III. Math. Comput. Sci., 6(55) (2013), 9-22.
- [16] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat. Pura Appl., (197) (2018), 127-138.
- [17] A. F. Solovev, Curvature of a distribution, Mathematical Notes of the Academy of Sciences of the USSR 35 (1984), 61-68.
- [18] A. F. Solovev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb, 19 (1978), 12-23.
- [19] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.
- [20] G. P. Pokhariyal, R. S. Mishra, Curvature tensors and their relativistic significance (II), The Yokohama Math. J., 19(2) (1971), 97-103.
Year 2024,
Volume: 7 Issue: 4, 220 - 228, 31.12.2024
Pushpa Bora
,
Jaya Upreti
,
Shankar Kumar
Project Number
DST/WISE-PhD/PM/2023/6(G)
References
- [1] A. Bejancu, H. R. Farran, Foliations and Geometric Structures, Springer Science and Business Media, (580) (2006).
- [2] A. Dündar, N. Aktan, Some results on nearly cosymplectic manifolds, Univ. J. Math. Appl., 2(4) (2019), 218-223.
- [3] R. Kundu, A. Das, A. Biswas, Conformal Ricci soliton in Sasakian manifolds admitting general connection, J. Hyperstruct., 13(1) (2024), 46-61.
- [4] S. Sundriyal, J. Upreti, Solitons on Para-Sasakian manifold with respect to the Schouten-Van Kampen connection, Ganita Vol., 73(1) (2023), 25-33.
- [5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-Van Kampen connection, Publications de l’Institut Mathematique, 102(116) (2017), 93-105.
- [6] G. Ghosh, On Schouten-Van Kampen connection in Sasakian manifolds, Boletim da Sociedade Paranaense de Mathematica, 36 (2018), 171-182.
- [7] M. Altunbaş, Some characterizations of hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection, Istanbul J. Math., 2(1) (2024), 28-32.
- [8] D. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math., 39(2) (1971), 285-292.
- [9] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tˆohoku Math. J., Second Series, 61(2) (2009), 205-212.
- [10] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17(2) (1982), 255-306.
- [11] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71, (1988) 237-261.
- [12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159 (2002).
- [13] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109 (2003).
- [14] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl., 3(4) (1993), 301-307.
- [15] K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bull. Transilv. Univ. Bras¸ov Ser. III. Math. Comput. Sci., 6(55) (2013), 9-22.
- [16] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat. Pura Appl., (197) (2018), 127-138.
- [17] A. F. Solovev, Curvature of a distribution, Mathematical Notes of the Academy of Sciences of the USSR 35 (1984), 61-68.
- [18] A. F. Solovev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb, 19 (1978), 12-23.
- [19] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.
- [20] G. P. Pokhariyal, R. S. Mishra, Curvature tensors and their relativistic significance (II), The Yokohama Math. J., 19(2) (1971), 97-103.