The following research investigates various types of soliton of NC (Nearly Cosymplectic) manifolds with SVK (Schouten-van Kampen) connections, which are steady, shrinking, or expanding. Further, we investigate the geometric characteristics of Ricci solitons, Yamabe solitons, $\eta$-ricci soliton etc. We also study the curvature features of the SVK connection on an NC manifold. In addition, an example is developed to demonstrate the results.
The author acknowledges the Department of Science & Technology, Government of India, for financial support vide reference no DST/WISE-PhD/PM/2023/6(Gunder 'WISE FELLOWSHIP for Ph.D.' to carry out this work.
References
[1] A. Bejancu, H. R. Farran, Foliations and Geometric Structures, Springer Science and Business Media, (580) (2006).
[2] A. Dündar, N. Aktan, Some results on nearly cosymplectic manifolds, Univ. J. Math. Appl., 2(4) (2019), 218-223.
[3] R. Kundu, A. Das, A. Biswas, Conformal Ricci soliton in Sasakian manifolds admitting general connection, J. Hyperstruct., 13(1) (2024), 46-61.
[4] S. Sundriyal, J. Upreti, Solitons on Para-Sasakian manifold with respect to the Schouten-Van Kampen connection, Ganita Vol., 73(1) (2023), 25-33.
[5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-Van Kampen connection, Publications de l’Institut Mathematique, 102(116) (2017), 93-105.
[6] G. Ghosh, On Schouten-Van Kampen connection in Sasakian manifolds, Boletim da Sociedade Paranaense de Mathematica, 36 (2018), 171-182.
[7] M. Altunbaş, Some characterizations of hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection, Istanbul J. Math., 2(1) (2024), 28-32.
[8] D. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math., 39(2) (1971), 285-292.
[9] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tˆohoku Math. J., Second Series, 61(2) (2009), 205-212.
[10] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17(2) (1982), 255-306.
[11] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71, (1988) 237-261.
[12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159 (2002).
[13] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109 (2003).
[14] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl., 3(4) (1993), 301-307.
[15] K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bull. Transilv. Univ. Bras¸ov Ser. III. Math. Comput. Sci., 6(55) (2013), 9-22.
[16] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat. Pura Appl., (197) (2018), 127-138.
[17] A. F. Solovev, Curvature of a distribution, Mathematical Notes of the Academy of Sciences of the USSR 35 (1984), 61-68.
[18] A. F. Solovev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb, 19 (1978), 12-23.
[19] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.
[20] G. P. Pokhariyal, R. S. Mishra, Curvature tensors and their relativistic significance (II), The Yokohama Math. J., 19(2) (1971), 97-103.
Year 2024,
Volume: 7 Issue: 4, 220 - 228, 31.12.2024
[1] A. Bejancu, H. R. Farran, Foliations and Geometric Structures, Springer Science and Business Media, (580) (2006).
[2] A. Dündar, N. Aktan, Some results on nearly cosymplectic manifolds, Univ. J. Math. Appl., 2(4) (2019), 218-223.
[3] R. Kundu, A. Das, A. Biswas, Conformal Ricci soliton in Sasakian manifolds admitting general connection, J. Hyperstruct., 13(1) (2024), 46-61.
[4] S. Sundriyal, J. Upreti, Solitons on Para-Sasakian manifold with respect to the Schouten-Van Kampen connection, Ganita Vol., 73(1) (2023), 25-33.
[5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-Van Kampen connection, Publications de l’Institut Mathematique, 102(116) (2017), 93-105.
[6] G. Ghosh, On Schouten-Van Kampen connection in Sasakian manifolds, Boletim da Sociedade Paranaense de Mathematica, 36 (2018), 171-182.
[7] M. Altunbaş, Some characterizations of hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection, Istanbul J. Math., 2(1) (2024), 28-32.
[8] D. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math., 39(2) (1971), 285-292.
[9] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tˆohoku Math. J., Second Series, 61(2) (2009), 205-212.
[10] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17(2) (1982), 255-306.
[11] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71, (1988) 237-261.
[12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159 (2002).
[13] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109 (2003).
[14] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl., 3(4) (1993), 301-307.
[15] K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bull. Transilv. Univ. Bras¸ov Ser. III. Math. Comput. Sci., 6(55) (2013), 9-22.
[16] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat. Pura Appl., (197) (2018), 127-138.
[17] A. F. Solovev, Curvature of a distribution, Mathematical Notes of the Academy of Sciences of the USSR 35 (1984), 61-68.
[18] A. F. Solovev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb, 19 (1978), 12-23.
[19] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.
[20] G. P. Pokhariyal, R. S. Mishra, Curvature tensors and their relativistic significance (II), The Yokohama Math. J., 19(2) (1971), 97-103.
Bora, P., Upreti, J., & Kumar, S. (2024). Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection. Communications in Advanced Mathematical Sciences, 7(4), 220-228. https://doi.org/10.33434/cams.1541298
AMA
Bora P, Upreti J, Kumar S. Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection. Communications in Advanced Mathematical Sciences. December 2024;7(4):220-228. doi:10.33434/cams.1541298
Chicago
Bora, Pushpa, Jaya Upreti, and Shankar Kumar. “Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection”. Communications in Advanced Mathematical Sciences 7, no. 4 (December 2024): 220-28. https://doi.org/10.33434/cams.1541298.
EndNote
Bora P, Upreti J, Kumar S (December 1, 2024) Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection. Communications in Advanced Mathematical Sciences 7 4 220–228.
IEEE
P. Bora, J. Upreti, and S. Kumar, “Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection”, Communications in Advanced Mathematical Sciences, vol. 7, no. 4, pp. 220–228, 2024, doi: 10.33434/cams.1541298.
ISNAD
Bora, Pushpa et al. “Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection”. Communications in Advanced Mathematical Sciences 7/4 (December 2024), 220-228. https://doi.org/10.33434/cams.1541298.
JAMA
Bora P, Upreti J, Kumar S. Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection. Communications in Advanced Mathematical Sciences. 2024;7:220–228.
MLA
Bora, Pushpa et al. “Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection”. Communications in Advanced Mathematical Sciences, vol. 7, no. 4, 2024, pp. 220-8, doi:10.33434/cams.1541298.
Vancouver
Bora P, Upreti J, Kumar S. Solitons on Nearly Cosymplectic Manifold Exhibitting Schouten Van Kampen Connection. Communications in Advanced Mathematical Sciences. 2024;7(4):220-8.