Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 3, 160 - 172, 23.09.2025
https://doi.org/10.33434/cams.1698737

Abstract

References

  • [1] K. Stephan, Heat and Mass Transfer, Springer-Verlag, Berlin, 2006.
  • [2] L. M. Jiji, Heat Conduction, Springer-Verlag, Berlin, 2009.
  • [3] I. Newton, The Principia, translated by A. Motte, Prometheus Books, Amherst, 1995.
  • [4] R. Almeida, What is the best fractional derivative to fit data?, Appl. Anal. Discrete Math., 11(2) (2017), 358–368. https://doi.org/10.2298/AADM170428002A
  • [5] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  • [6] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D’Alembert approach, Progr. Fract. Differ. Appl., 2(2) (2016), 115-122. http://dx.doi.org/10.18576/pfda/020204
  • [7] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • [8] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • [9] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • [10] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [11] C. Ünlü, Kesirli türevli diferansiyel denklemler ve çözüm yöntemleri, Ph.D. Thesis, Istanbul University, 2014.
  • [12] F. A. Godinez, M. Navarrete, O. A. Chavez, A. Merlin, J. R. Valdes, Two fractal versions of Newton’s Law of Cooling, Progr. Fract. Differ. Appl., 1(2) (2015), 133-143.
  • [13] K. C. Cheng, Some observations on the origins of Newton’s Law of Cooling and its influences on thermofluid science, Appl. Mech. Rev., 62(6) (2009), Article ID 060803. https://doi.org/10.1115/1.3090832
  • [14] J. F. Gomez-Aguilar, J. R. Razo-Hernandez, Fractional Newton cooling law, Investigacion Ciencia, 61 (2014), 12-18.
  • [15] B. Jackson, Partial dynamic equations on time scales, J. Comput. Appl. Math., 186(2) (2006), 391–415. https://doi.org/10.1016/j.cam.2005.02.011
  • [16] G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285(1) (2003), 107-127. https://doi.org/10.1016/ S0022-247X(03)00361-5
  • [17] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56. https://doi.org/10.1007/BF03323153
  • [18] M. Bohner, S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Cham, 2016.
  • [19] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
  • [20] J. Mahaffy, Calculus: A Modeling Approach for the Life Sciences, Volume II: Integral Calculus and Differential Equations, Pearson Custom Publishing, Boston, 2005.
  • [21] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10(2) (2015), 109–137.
  • [22] D. R. Anderson, S. G. Georgiev, Conformable Dynamic Equations on Time Scales, CRC Press, Boca Raton, 2020.
  • [23] G. J. Gonzalez-Hernandez, C. Medellin-Verduzco, An experimental setup for teaching Newton’s law of cooling, International Journal of Humanities and Social Science Invention, 6(1) (2017), 24–27.
  • [24] J. A. Ruffner, Reinterpretation of the genesis of Newton’s law of cooling, Arch. Hist. Exact Sci., 2(2) (1964), 138–152.
  • [25] S. Maruyama, S. Moriya, Newton’s law of cooling: Follow-up and exploration, Int. J. Heat Mass Transf., 164 (2021), Article ID 120544. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544
  • [26] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290 (2015), 150-158. https://doi.org/10.1016/j.cam.2015.04.049
  • [27] H. Şirin, A. E. Çalık, Newton’un soğuma kanunu: Kesirsel bir yaklasşım, AKU J. Sci. Eng., 19(1) (2019), 60-66. https://doi.org/10.35414/akufemubid.378360
  • [28] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

Investigation of Newton's Law of Cooling on Time Scales with Proportional Derivative

Year 2025, Volume: 8 Issue: 3, 160 - 172, 23.09.2025
https://doi.org/10.33434/cams.1698737

Abstract

In this study, the proportional type Newton’s law of cooling is discussed, and solutions are obtained on some common time scales. This model, which plays an important role in physics, is examined in both proportional and delta derivative cases on time scales. Then, the obtained solutions are interpreted graphically, and the contributions of time scale calculus with proportional derivative to the theory are revealed. The aim of the study is to examine the effect of the delta and the proportional derivative on the model on time scales.

References

  • [1] K. Stephan, Heat and Mass Transfer, Springer-Verlag, Berlin, 2006.
  • [2] L. M. Jiji, Heat Conduction, Springer-Verlag, Berlin, 2009.
  • [3] I. Newton, The Principia, translated by A. Motte, Prometheus Books, Amherst, 1995.
  • [4] R. Almeida, What is the best fractional derivative to fit data?, Appl. Anal. Discrete Math., 11(2) (2017), 358–368. https://doi.org/10.2298/AADM170428002A
  • [5] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
  • [6] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D’Alembert approach, Progr. Fract. Differ. Appl., 2(2) (2016), 115-122. http://dx.doi.org/10.18576/pfda/020204
  • [7] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  • [8] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • [9] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • [10] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [11] C. Ünlü, Kesirli türevli diferansiyel denklemler ve çözüm yöntemleri, Ph.D. Thesis, Istanbul University, 2014.
  • [12] F. A. Godinez, M. Navarrete, O. A. Chavez, A. Merlin, J. R. Valdes, Two fractal versions of Newton’s Law of Cooling, Progr. Fract. Differ. Appl., 1(2) (2015), 133-143.
  • [13] K. C. Cheng, Some observations on the origins of Newton’s Law of Cooling and its influences on thermofluid science, Appl. Mech. Rev., 62(6) (2009), Article ID 060803. https://doi.org/10.1115/1.3090832
  • [14] J. F. Gomez-Aguilar, J. R. Razo-Hernandez, Fractional Newton cooling law, Investigacion Ciencia, 61 (2014), 12-18.
  • [15] B. Jackson, Partial dynamic equations on time scales, J. Comput. Appl. Math., 186(2) (2006), 391–415. https://doi.org/10.1016/j.cam.2005.02.011
  • [16] G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285(1) (2003), 107-127. https://doi.org/10.1016/ S0022-247X(03)00361-5
  • [17] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56. https://doi.org/10.1007/BF03323153
  • [18] M. Bohner, S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Cham, 2016.
  • [19] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
  • [20] J. Mahaffy, Calculus: A Modeling Approach for the Life Sciences, Volume II: Integral Calculus and Differential Equations, Pearson Custom Publishing, Boston, 2005.
  • [21] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10(2) (2015), 109–137.
  • [22] D. R. Anderson, S. G. Georgiev, Conformable Dynamic Equations on Time Scales, CRC Press, Boca Raton, 2020.
  • [23] G. J. Gonzalez-Hernandez, C. Medellin-Verduzco, An experimental setup for teaching Newton’s law of cooling, International Journal of Humanities and Social Science Invention, 6(1) (2017), 24–27.
  • [24] J. A. Ruffner, Reinterpretation of the genesis of Newton’s law of cooling, Arch. Hist. Exact Sci., 2(2) (1964), 138–152.
  • [25] S. Maruyama, S. Moriya, Newton’s law of cooling: Follow-up and exploration, Int. J. Heat Mass Transf., 164 (2021), Article ID 120544. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544
  • [26] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290 (2015), 150-158. https://doi.org/10.1016/j.cam.2015.04.049
  • [27] H. Şirin, A. E. Çalık, Newton’un soğuma kanunu: Kesirsel bir yaklasşım, AKU J. Sci. Eng., 19(1) (2019), 60-66. https://doi.org/10.35414/akufemubid.378360
  • [28] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
There are 28 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Articles
Authors

Merve Çolak 0009-0006-3978-5505

Emrah Yılmaz 0000-0002-7822-9193

Early Pub Date September 23, 2025
Publication Date September 23, 2025
Submission Date May 13, 2025
Acceptance Date September 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Çolak, M., & Yılmaz, E. (2025). Investigation of Newton’s Law of Cooling on Time Scales with Proportional Derivative. Communications in Advanced Mathematical Sciences, 8(3), 160-172. https://doi.org/10.33434/cams.1698737
AMA Çolak M, Yılmaz E. Investigation of Newton’s Law of Cooling on Time Scales with Proportional Derivative. Communications in Advanced Mathematical Sciences. September 2025;8(3):160-172. doi:10.33434/cams.1698737
Chicago Çolak, Merve, and Emrah Yılmaz. “Investigation of Newton’s Law of Cooling on Time Scales With Proportional Derivative”. Communications in Advanced Mathematical Sciences 8, no. 3 (September 2025): 160-72. https://doi.org/10.33434/cams.1698737.
EndNote Çolak M, Yılmaz E (September 1, 2025) Investigation of Newton’s Law of Cooling on Time Scales with Proportional Derivative. Communications in Advanced Mathematical Sciences 8 3 160–172.
IEEE M. Çolak and E. Yılmaz, “Investigation of Newton’s Law of Cooling on Time Scales with Proportional Derivative”, Communications in Advanced Mathematical Sciences, vol. 8, no. 3, pp. 160–172, 2025, doi: 10.33434/cams.1698737.
ISNAD Çolak, Merve - Yılmaz, Emrah. “Investigation of Newton’s Law of Cooling on Time Scales With Proportional Derivative”. Communications in Advanced Mathematical Sciences 8/3 (September2025), 160-172. https://doi.org/10.33434/cams.1698737.
JAMA Çolak M, Yılmaz E. Investigation of Newton’s Law of Cooling on Time Scales with Proportional Derivative. Communications in Advanced Mathematical Sciences. 2025;8:160–172.
MLA Çolak, Merve and Emrah Yılmaz. “Investigation of Newton’s Law of Cooling on Time Scales With Proportional Derivative”. Communications in Advanced Mathematical Sciences, vol. 8, no. 3, 2025, pp. 160-72, doi:10.33434/cams.1698737.
Vancouver Çolak M, Yılmaz E. Investigation of Newton’s Law of Cooling on Time Scales with Proportional Derivative. Communications in Advanced Mathematical Sciences. 2025;8(3):160-72.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..