Research Article
BibTex RIS Cite

Year 2020, Volume: 17 Issue: 2, 101 - 107, 01.11.2020
https://izlik.org/JA97EH63MY

Abstract

References

  • [1] Sk. Selim, T. Noiri, S. Modak, “Ideals and the associated filters on topological spaces,” Eurasian Bulletin of Mathematics, vol. 2(3), pp. 80-85, 2019.
  • [2] D. Janković, T. R. Hamlett, “New topologies from old via ideals,” The American Mathematical Monthly, vol. 97, pp. 295-310, 1990.
  • [3] T. Natkaniec, “On I-continuity and I-semicontinuity points,” Mathematica Slovaca, vol. 36(3), pp. 297-312, 1986.
  • [4] K. Kuratowski, Topology, Vol. I, New York, Academic Press, 1966.
  • [5] E. Hayashi, “Topologies defined by local properties,” Mathematische Annalen, vol. 156, pp. 205-215, 1964.
  • [6] H. Hashimoto, “On the  -topology and its applications,” Fundamenta Mathematicae, vol. 91, pp. 5-10, 1976.
  • [7] T. R. Hamlett, D. Janković, “Ideals in topological spaces and the set operator Ψ,” Bollettino dell'Unione Matematica Italiana., vol. 7, no. (4-B), pp. 863-874, 1990.
  • [8] S. Modak, “Some new topologies on ideal topological spaces,” Proceedings of the National Academy of Sciences, India, Sect. A Phys. Sci., vol. 82(3), pp. 233-243, 2012.
  • [9] P. Samuel, “A topology formed from a given topology and ideal,” Journal of the London Mathematical Society, vol.10, pp. 409-416, 1975.
  • [10] A. Al-Omari, H. Al-Saadi, “A topology via ω-local functions in ideal spaces,” Mathematica, vol. 60(83), pp. 103-110, 2018.
  • [11] C. Bandhopadhya, S. Modak, “A new topology via Ψ-operator,” Proceedings of the National Academy of Sciences, India, vol. 76(A), no. IV, pp. 317-320, 2006.
  • [12] S. Modak, C. Bandyopadhyay, “A note on Ψ-operator,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 30(1), 43-48, 2007. [13] K. D. Joshi, Introduction to General Topology, Michigan: Wiley, 1983.
  • [14] N. Bourbaki, General Topology, Chapter 1-4, Verlag, Berlin, Heidelberg: Springer, 1989.
  • [15] S. Modak, Sk. Selim and Md. M. Islam, “Sets and functions in terms of local function,” Submitted.

Convergence of the Associated Filters via Set-Operators

Year 2020, Volume: 17 Issue: 2, 101 - 107, 01.11.2020
https://izlik.org/JA97EH63MY

Abstract

                                                                                                                                                                                                                                                                                                             

Let (X, τ) be a topological space.     For a proper ideal I on (X, τ), the associated filter FI is defined and investigated in [1].    In this paper, we define several set-operators on an ideal topological space (X, τ, I) and investigate the relationship between the set-operators and limit points of the associated filter FI.

References

  • [1] Sk. Selim, T. Noiri, S. Modak, “Ideals and the associated filters on topological spaces,” Eurasian Bulletin of Mathematics, vol. 2(3), pp. 80-85, 2019.
  • [2] D. Janković, T. R. Hamlett, “New topologies from old via ideals,” The American Mathematical Monthly, vol. 97, pp. 295-310, 1990.
  • [3] T. Natkaniec, “On I-continuity and I-semicontinuity points,” Mathematica Slovaca, vol. 36(3), pp. 297-312, 1986.
  • [4] K. Kuratowski, Topology, Vol. I, New York, Academic Press, 1966.
  • [5] E. Hayashi, “Topologies defined by local properties,” Mathematische Annalen, vol. 156, pp. 205-215, 1964.
  • [6] H. Hashimoto, “On the  -topology and its applications,” Fundamenta Mathematicae, vol. 91, pp. 5-10, 1976.
  • [7] T. R. Hamlett, D. Janković, “Ideals in topological spaces and the set operator Ψ,” Bollettino dell'Unione Matematica Italiana., vol. 7, no. (4-B), pp. 863-874, 1990.
  • [8] S. Modak, “Some new topologies on ideal topological spaces,” Proceedings of the National Academy of Sciences, India, Sect. A Phys. Sci., vol. 82(3), pp. 233-243, 2012.
  • [9] P. Samuel, “A topology formed from a given topology and ideal,” Journal of the London Mathematical Society, vol.10, pp. 409-416, 1975.
  • [10] A. Al-Omari, H. Al-Saadi, “A topology via ω-local functions in ideal spaces,” Mathematica, vol. 60(83), pp. 103-110, 2018.
  • [11] C. Bandhopadhya, S. Modak, “A new topology via Ψ-operator,” Proceedings of the National Academy of Sciences, India, vol. 76(A), no. IV, pp. 317-320, 2006.
  • [12] S. Modak, C. Bandyopadhyay, “A note on Ψ-operator,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 30(1), 43-48, 2007. [13] K. D. Joshi, Introduction to General Topology, Michigan: Wiley, 1983.
  • [14] N. Bourbaki, General Topology, Chapter 1-4, Verlag, Berlin, Heidelberg: Springer, 1989.
  • [15] S. Modak, Sk. Selim and Md. M. Islam, “Sets and functions in terms of local function,” Submitted.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Takashi Noiri

Sk Selım 0000-0002-4226-2004

Shyamapada Modak

Publication Date November 1, 2020
IZ https://izlik.org/JA97EH63MY
Published in Issue Year 2020 Volume: 17 Issue: 2

Cite

APA Noiri, T., Selım, S., & Modak, S. (2020). Convergence of the Associated Filters via Set-Operators. Cankaya University Journal of Science and Engineering, 17(2), 101-107. https://izlik.org/JA97EH63MY
AMA 1.Noiri T, Selım S, Modak S. Convergence of the Associated Filters via Set-Operators. CUJSE. 2020;17(2):101-107. https://izlik.org/JA97EH63MY
Chicago Noiri, Takashi, Sk Selım, and Shyamapada Modak. 2020. “Convergence of the Associated Filters via Set-Operators”. Cankaya University Journal of Science and Engineering 17 (2): 101-7. https://izlik.org/JA97EH63MY.
EndNote Noiri T, Selım S, Modak S (November 1, 2020) Convergence of the Associated Filters via Set-Operators. Cankaya University Journal of Science and Engineering 17 2 101–107.
IEEE [1]T. Noiri, S. Selım, and S. Modak, “Convergence of the Associated Filters via Set-Operators”, CUJSE, vol. 17, no. 2, pp. 101–107, Nov. 2020, [Online]. Available: https://izlik.org/JA97EH63MY
ISNAD Noiri, Takashi - Selım, Sk - Modak, Shyamapada. “Convergence of the Associated Filters via Set-Operators”. Cankaya University Journal of Science and Engineering 17/2 (November 1, 2020): 101-107. https://izlik.org/JA97EH63MY.
JAMA 1.Noiri T, Selım S, Modak S. Convergence of the Associated Filters via Set-Operators. CUJSE. 2020;17:101–107.
MLA Noiri, Takashi, et al. “Convergence of the Associated Filters via Set-Operators”. Cankaya University Journal of Science and Engineering, vol. 17, no. 2, Nov. 2020, pp. 101-7, https://izlik.org/JA97EH63MY.
Vancouver 1.Noiri T, Selım S, Modak S. Convergence of the Associated Filters via Set-Operators. CUJSE [Internet]. 2020 Nov. 1;17(2):101-7. Available from: https://izlik.org/JA97EH63MY