Research Article
BibTex RIS Cite
Year 2018, Volume: 15 Issue: 2, - , 30.11.2018

Abstract

References

  • [1] A.L. Besse, Einstein Manifolds, Spring-Verlag, Berlin, (1987).
  • [2] H.D. Cao, Geometry of Ricci solitons, Chin. Ann. Math. Ser. B, 27(2), (2006), 121-142.
  • [3] H.D. Cao, Recent progress on Ricci solitons, arXiv:0908.2006v1.
  • [4] B.Y. Chen, Pseudo-Riemannian geometry, d-invariants and applications,World Scientific Publishing Co. Pte. Ltd,Usa, (2011).
  • [5] B.Y. Chen, SH. Deshmukh, Ricci solitons and concurrent vector fields, arXiv:1407.2790.
  • [6] S. Deshmukh, F.R. Al-Solamy, Conformal vector fields on a Riemannian manifold, Balkan Journal of Geometryand Its Applications, 19(2), (2014), 86-93.
  • [7] J.N. Gomes, Q. Wang, C. Xia, On the h-almost Ricci soliton. arXiv:1411.6416v2.
  • [8] R.S. Hamilton, Three manifolds with positive Ricci curvature, J. Diff. Geom., 17, (1982),255-306.
  • [9] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71, (1988), 237-261.
  • [10] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Limited, London,(1983).
  • [11] S. Pigola, M. Rigoli, M. Rimoldi, A.G. Setti, Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10,(2011), 757-799.
  • [12] M. Sanchez, Lorentzian manifolds admitting a Killing vector field, Nonlinear Analysis, 30, (1997), 643-654.
  • [13] S. Shenawy, Ricci solitons on warped product manifolds, arXiv:1508.02794.
  • [14] S. Shenawy B. Unal, 2-Killing vector fields on warped product manifolds, Int. J. Math, 26, (2015), [17 pages].

Generalized Ricci Solitons on Twisted Products

Year 2018, Volume: 15 Issue: 2, - , 30.11.2018

Abstract

An h-almost Ricci soliton is a generalization of the Ricci soliton. In this paper we study Ricci solitons and h-almost Ricci solitons on twisted (and warped) product manifolds. First, we obtain some results about Ricci solitons on twisted products. Then we generalize them to h- almost Ricci solitons.


References

  • [1] A.L. Besse, Einstein Manifolds, Spring-Verlag, Berlin, (1987).
  • [2] H.D. Cao, Geometry of Ricci solitons, Chin. Ann. Math. Ser. B, 27(2), (2006), 121-142.
  • [3] H.D. Cao, Recent progress on Ricci solitons, arXiv:0908.2006v1.
  • [4] B.Y. Chen, Pseudo-Riemannian geometry, d-invariants and applications,World Scientific Publishing Co. Pte. Ltd,Usa, (2011).
  • [5] B.Y. Chen, SH. Deshmukh, Ricci solitons and concurrent vector fields, arXiv:1407.2790.
  • [6] S. Deshmukh, F.R. Al-Solamy, Conformal vector fields on a Riemannian manifold, Balkan Journal of Geometryand Its Applications, 19(2), (2014), 86-93.
  • [7] J.N. Gomes, Q. Wang, C. Xia, On the h-almost Ricci soliton. arXiv:1411.6416v2.
  • [8] R.S. Hamilton, Three manifolds with positive Ricci curvature, J. Diff. Geom., 17, (1982),255-306.
  • [9] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71, (1988), 237-261.
  • [10] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Limited, London,(1983).
  • [11] S. Pigola, M. Rigoli, M. Rimoldi, A.G. Setti, Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10,(2011), 757-799.
  • [12] M. Sanchez, Lorentzian manifolds admitting a Killing vector field, Nonlinear Analysis, 30, (1997), 643-654.
  • [13] S. Shenawy, Ricci solitons on warped product manifolds, arXiv:1508.02794.
  • [14] S. Shenawy B. Unal, 2-Killing vector fields on warped product manifolds, Int. J. Math, 26, (2015), [17 pages].
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahdi Barari This is me

Asadollah Razavi

Publication Date November 30, 2018
Published in Issue Year 2018 Volume: 15 Issue: 2

Cite

APA Barari, M., & Razavi, A. (2018). Generalized Ricci Solitons on Twisted Products. Cankaya University Journal of Science and Engineering, 15(2).
AMA Barari M, Razavi A. Generalized Ricci Solitons on Twisted Products. CUJSE. November 2018;15(2).
Chicago Barari, Mahdi, and Asadollah Razavi. “Generalized Ricci Solitons on Twisted Products”. Cankaya University Journal of Science and Engineering 15, no. 2 (November 2018).
EndNote Barari M, Razavi A (November 1, 2018) Generalized Ricci Solitons on Twisted Products. Cankaya University Journal of Science and Engineering 15 2
IEEE M. Barari and A. Razavi, “Generalized Ricci Solitons on Twisted Products”, CUJSE, vol. 15, no. 2, 2018.
ISNAD Barari, Mahdi - Razavi, Asadollah. “Generalized Ricci Solitons on Twisted Products”. Cankaya University Journal of Science and Engineering 15/2 (November 2018).
JAMA Barari M, Razavi A. Generalized Ricci Solitons on Twisted Products. CUJSE. 2018;15.
MLA Barari, Mahdi and Asadollah Razavi. “Generalized Ricci Solitons on Twisted Products”. Cankaya University Journal of Science and Engineering, vol. 15, no. 2, 2018.
Vancouver Barari M, Razavi A. Generalized Ricci Solitons on Twisted Products. CUJSE. 2018;15(2).