Year 2019,
Volume: 16 Issue: 2, 16 - 31, 01.11.2019
Saeed Balochıan
,
Gholam Reza Alıkhanı
References
- [1] L. Humaidi, “Performance of stochastic targeted blood glucose control protocol by virtual trials in the Malaysian intensive care unit.” Comput Methods Programs Biomed. (2018) 162:149-155.[2] G. Rigatos, P. Siano, A. Melkikh. “A nonlinear optimal control approach of insulin infusion for blood glucose levels regulation.” Intell Ind Syst (2017) 3: 91.[3] J. Blaha et al, “Space GlucoseControl system for blood glucose control in intensive care patients a European multicentre observational study.” BMC Anesthesiology (2016) 16:8.[4] S. Mandal, A. Sutradhar, “Multi-objective control of blood glucose with H-Infinity and pole-placement constraint.” Int. J. Dynam. Control (2017) 5: 357.[5] N. Mita, S. Kawahito, T. Soga, K. Takaishi, H. Kitahata, M. Matsuhisa, M. Shimada, H. Kinoshita, Y. M. Tsutsumi, K. Tanaka. “Strict blood glucose control by an artificial endocrine pancreas during hepatectomy may prevent postoperative acute kidney injury.” J Artif Organs. (2017), 20(1):76-83.[6] H. Heydarinejad, H. Delavari. “Fractional back stepping sliding mode control for blood glucose regulation in type I diabetes patients.” eBook, Theory and Applications of Non-integer Order Systems, pp 187-202, Springer, Cham, 2016.[7] J. Dubois, T. V. Herpe, R. T. Hooijdonk, R. Wouters, D. Coart, P. Wouters, A. V. Assche, G. Veraghtert, B. De Moor, J. Wauters, A. Wilmer, M. J. Schultz, G. V. d. Bergh, D. Mesotten. “Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial.” Dubois et al. Critical Care (2017) 21:212.[8] M. Ottavian, M. Barolo, H. Zisser, E. Dassau, D. E. Seborg. “Adaptive blood glucose control for intensive care applications.” Comput Methods Programs Biomed 109(2) (2013), 144-156.[9] V. Kirubakaran, T. K. Radkakrishnam, N. Sivakumaran. “Blood glucose concentration regulation in Type 1 diabetics using multi model multi parametric model predictive control: An empirical approach.” IFAC Proceedings Volumes. Volume 46(31), (2013) 291-296.[10] S. Karra, N. M. Karim, B. Han. “Predictive control of blood glucose concentration in type-I diabetic patients using linear input-output models.” 10th international IFAC Symposium on computer applications in biotechnology Proceedings Vol.1, June 4-6, 2007, Cancun, Mexico. [11] J. B. Lee, R. Gondhalekar, E. Dassau, F. J. Doyle. “Shaping the MPC Cost Function for superior automated glucose control.” IFAC- Papers Online 49-7 (2016) 779-784.[12] T. D. Knab, G. Clermont, R. S. Parker. “Zone model predictive control and moving horizon estimation for the regulation of blood glucose in critical care patients.” IFAC-Papers OnLine 48-8 (2015) 1002-1007.[13] J. Lin, N. N. Raak, C. G. Pretty, A. Le Compte, P. Docherty, J. D. Parente, G. M. Shaw, C. E. Hann, J. G. Chase. “A physiological intensive control insulin-nutrition- glucose (ICING) model validated in critically ill patients.” Comput Methods Programs Biomed, 102 (2011) 192–205. [14] H. Zisser, L. Jovanovi c, U. Khan, T. Peyser, S. Gamsey, M. Romey, H. Spencer, “Accuracy of a novel intravascular fluorescent glucose sensor.” Diabetes 58 (2009), Late Breaking 1-LB.[15] C. Li, C. Zhao, C. Yu. “Blood glucose control based on rapid model identification with particle swarm optimization.” IEEE 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28-30 May 2017.[16] C. Beldowicz, J. Duby, D. Pigneri, C. S. Cocanour. “Glycemic control in critically ill surgical patients.” Book, Surgical Critical Care Therapy, Springer, Cham, (2018) pp 441-450. [17] Y. Ding, Y. Wangm D. Zhou. “Mortality prediction for ICU patients combining just-in-time learning and extreme learning machine.” Neurocomputing, 281 (2018) 12-19.[18] Y. Ding, X. Ma, Y. Wang. “Health status monitoring for ICU patients based on locally weighted principal component analysis.” Comput Methods Programs Biomed, 156 (2018) 61-71. [19] X. Li, Y. Wang. “Adaptive online monitoring for ICU patients by combining just-in-time learning and principal component analysis.” J clin Monit Comput (2016) 30:807-820.[20] A. Nath, R. Dey, V. E. Balas. “Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control.” Springer International Publishing AG 2018 V.E. Balas et al. (eds.), Soft Computing Applications, Advances in Intelligent Systems and Computing 63, 2018.[21] H. Qian, Y. Feng, Z. Zheng. “Design of adaptive predictive controller for superheated steam temperature control in thermal power plant.” Springer Nature Singapore Pte Ltd. 2017 K. Li et al. (Eds.): LSMS/ICSEE 2017, Part III, CCIS 763, pp. 409–419, 2017.[22] A. Taeib, M. Soltani, A. Chaari. “MPC based on NBPSO for nonlinear process with constrants.” IEEE 13th International Conference on Hybrid Intelligent Systems (HIS 2013), Gammarth, Tunisia, 4-6 Dec. 2013.[23] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-part I. The Basic Algorithm,” Automatica. (1987) 23(2) 137-148.[24] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-part II. Extentions and Interpretations,” Automatica. (1987) 23(2) 149-160.[25] Z. Zidanem M. Ait Lafkih, M. Ramzi. “Adaptive generalized predictive control of a heat exchanger pilot plant” 2011 International Conference on Multimedia Computing and Systems, Ouarzazate, Morocco, 12 July 2011.[26] D.W. Clarke, E. Mosca and R. Scattolini, “Robustness of an adaptive predictive controller” , IEEE Transactions on Automatic Control, (1994) 39(5), pp.1052-1056.
Blood Glucose Adaptive Generalized Predictive Control for Critical Care Patients
Year 2019,
Volume: 16 Issue: 2, 16 - 31, 01.11.2019
Saeed Balochıan
,
Gholam Reza Alıkhanı
Abstract
Blood glucose (BG) concentration control for
diabetic patients is a useful tool to reduce death and emergence of serious
complications. But glucose control in patients with high variation and
uncertainty with physiological conditions is harder. A generalized predictive
control based on adaptive control strategy with frequent glucose measurements
is proposed for blood glucose illness. Estimation of the parameters of the
model is performed with an identification algorithm based on Recursive Least
Squares (RLS) in on-line manner. The adaptive generalized predictive control is
performed and the results have shown that our proposed method is superior and
effective in controlling the concentration of blood glucose, contrary to the
high variations in the blood glucose response.
References
- [1] L. Humaidi, “Performance of stochastic targeted blood glucose control protocol by virtual trials in the Malaysian intensive care unit.” Comput Methods Programs Biomed. (2018) 162:149-155.[2] G. Rigatos, P. Siano, A. Melkikh. “A nonlinear optimal control approach of insulin infusion for blood glucose levels regulation.” Intell Ind Syst (2017) 3: 91.[3] J. Blaha et al, “Space GlucoseControl system for blood glucose control in intensive care patients a European multicentre observational study.” BMC Anesthesiology (2016) 16:8.[4] S. Mandal, A. Sutradhar, “Multi-objective control of blood glucose with H-Infinity and pole-placement constraint.” Int. J. Dynam. Control (2017) 5: 357.[5] N. Mita, S. Kawahito, T. Soga, K. Takaishi, H. Kitahata, M. Matsuhisa, M. Shimada, H. Kinoshita, Y. M. Tsutsumi, K. Tanaka. “Strict blood glucose control by an artificial endocrine pancreas during hepatectomy may prevent postoperative acute kidney injury.” J Artif Organs. (2017), 20(1):76-83.[6] H. Heydarinejad, H. Delavari. “Fractional back stepping sliding mode control for blood glucose regulation in type I diabetes patients.” eBook, Theory and Applications of Non-integer Order Systems, pp 187-202, Springer, Cham, 2016.[7] J. Dubois, T. V. Herpe, R. T. Hooijdonk, R. Wouters, D. Coart, P. Wouters, A. V. Assche, G. Veraghtert, B. De Moor, J. Wauters, A. Wilmer, M. J. Schultz, G. V. d. Bergh, D. Mesotten. “Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial.” Dubois et al. Critical Care (2017) 21:212.[8] M. Ottavian, M. Barolo, H. Zisser, E. Dassau, D. E. Seborg. “Adaptive blood glucose control for intensive care applications.” Comput Methods Programs Biomed 109(2) (2013), 144-156.[9] V. Kirubakaran, T. K. Radkakrishnam, N. Sivakumaran. “Blood glucose concentration regulation in Type 1 diabetics using multi model multi parametric model predictive control: An empirical approach.” IFAC Proceedings Volumes. Volume 46(31), (2013) 291-296.[10] S. Karra, N. M. Karim, B. Han. “Predictive control of blood glucose concentration in type-I diabetic patients using linear input-output models.” 10th international IFAC Symposium on computer applications in biotechnology Proceedings Vol.1, June 4-6, 2007, Cancun, Mexico. [11] J. B. Lee, R. Gondhalekar, E. Dassau, F. J. Doyle. “Shaping the MPC Cost Function for superior automated glucose control.” IFAC- Papers Online 49-7 (2016) 779-784.[12] T. D. Knab, G. Clermont, R. S. Parker. “Zone model predictive control and moving horizon estimation for the regulation of blood glucose in critical care patients.” IFAC-Papers OnLine 48-8 (2015) 1002-1007.[13] J. Lin, N. N. Raak, C. G. Pretty, A. Le Compte, P. Docherty, J. D. Parente, G. M. Shaw, C. E. Hann, J. G. Chase. “A physiological intensive control insulin-nutrition- glucose (ICING) model validated in critically ill patients.” Comput Methods Programs Biomed, 102 (2011) 192–205. [14] H. Zisser, L. Jovanovi c, U. Khan, T. Peyser, S. Gamsey, M. Romey, H. Spencer, “Accuracy of a novel intravascular fluorescent glucose sensor.” Diabetes 58 (2009), Late Breaking 1-LB.[15] C. Li, C. Zhao, C. Yu. “Blood glucose control based on rapid model identification with particle swarm optimization.” IEEE 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28-30 May 2017.[16] C. Beldowicz, J. Duby, D. Pigneri, C. S. Cocanour. “Glycemic control in critically ill surgical patients.” Book, Surgical Critical Care Therapy, Springer, Cham, (2018) pp 441-450. [17] Y. Ding, Y. Wangm D. Zhou. “Mortality prediction for ICU patients combining just-in-time learning and extreme learning machine.” Neurocomputing, 281 (2018) 12-19.[18] Y. Ding, X. Ma, Y. Wang. “Health status monitoring for ICU patients based on locally weighted principal component analysis.” Comput Methods Programs Biomed, 156 (2018) 61-71. [19] X. Li, Y. Wang. “Adaptive online monitoring for ICU patients by combining just-in-time learning and principal component analysis.” J clin Monit Comput (2016) 30:807-820.[20] A. Nath, R. Dey, V. E. Balas. “Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control.” Springer International Publishing AG 2018 V.E. Balas et al. (eds.), Soft Computing Applications, Advances in Intelligent Systems and Computing 63, 2018.[21] H. Qian, Y. Feng, Z. Zheng. “Design of adaptive predictive controller for superheated steam temperature control in thermal power plant.” Springer Nature Singapore Pte Ltd. 2017 K. Li et al. (Eds.): LSMS/ICSEE 2017, Part III, CCIS 763, pp. 409–419, 2017.[22] A. Taeib, M. Soltani, A. Chaari. “MPC based on NBPSO for nonlinear process with constrants.” IEEE 13th International Conference on Hybrid Intelligent Systems (HIS 2013), Gammarth, Tunisia, 4-6 Dec. 2013.[23] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-part I. The Basic Algorithm,” Automatica. (1987) 23(2) 137-148.[24] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-part II. Extentions and Interpretations,” Automatica. (1987) 23(2) 149-160.[25] Z. Zidanem M. Ait Lafkih, M. Ramzi. “Adaptive generalized predictive control of a heat exchanger pilot plant” 2011 International Conference on Multimedia Computing and Systems, Ouarzazate, Morocco, 12 July 2011.[26] D.W. Clarke, E. Mosca and R. Scattolini, “Robustness of an adaptive predictive controller” , IEEE Transactions on Automatic Control, (1994) 39(5), pp.1052-1056.