Research Article
BibTex RIS Cite
Year 2020, Volume: 17 Issue: 2, 101 - 107, 01.11.2020

Abstract

References

  • [1] Sk. Selim, T. Noiri, S. Modak, “Ideals and the associated filters on topological spaces,” Eurasian Bulletin of Mathematics, vol. 2(3), pp. 80-85, 2019.
  • [2] D. Janković, T. R. Hamlett, “New topologies from old via ideals,” The American Mathematical Monthly, vol. 97, pp. 295-310, 1990.
  • [3] T. Natkaniec, “On I-continuity and I-semicontinuity points,” Mathematica Slovaca, vol. 36(3), pp. 297-312, 1986.
  • [4] K. Kuratowski, Topology, Vol. I, New York, Academic Press, 1966.
  • [5] E. Hayashi, “Topologies defined by local properties,” Mathematische Annalen, vol. 156, pp. 205-215, 1964.
  • [6] H. Hashimoto, “On the  -topology and its applications,” Fundamenta Mathematicae, vol. 91, pp. 5-10, 1976.
  • [7] T. R. Hamlett, D. Janković, “Ideals in topological spaces and the set operator Ψ,” Bollettino dell'Unione Matematica Italiana., vol. 7, no. (4-B), pp. 863-874, 1990.
  • [8] S. Modak, “Some new topologies on ideal topological spaces,” Proceedings of the National Academy of Sciences, India, Sect. A Phys. Sci., vol. 82(3), pp. 233-243, 2012.
  • [9] P. Samuel, “A topology formed from a given topology and ideal,” Journal of the London Mathematical Society, vol.10, pp. 409-416, 1975.
  • [10] A. Al-Omari, H. Al-Saadi, “A topology via ω-local functions in ideal spaces,” Mathematica, vol. 60(83), pp. 103-110, 2018.
  • [11] C. Bandhopadhya, S. Modak, “A new topology via Ψ-operator,” Proceedings of the National Academy of Sciences, India, vol. 76(A), no. IV, pp. 317-320, 2006.
  • [12] S. Modak, C. Bandyopadhyay, “A note on Ψ-operator,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 30(1), 43-48, 2007. [13] K. D. Joshi, Introduction to General Topology, Michigan: Wiley, 1983.
  • [14] N. Bourbaki, General Topology, Chapter 1-4, Verlag, Berlin, Heidelberg: Springer, 1989.
  • [15] S. Modak, Sk. Selim and Md. M. Islam, “Sets and functions in terms of local function,” Submitted.

Convergence of the Associated Filters via Set-Operators

Year 2020, Volume: 17 Issue: 2, 101 - 107, 01.11.2020

Abstract

                                                                                                                                                                                                                                                                                                             

Let (X, τ) be a topological space.     For a proper ideal I on (X, τ), the associated filter FI is defined and investigated in [1].    In this paper, we define several set-operators on an ideal topological space (X, τ, I) and investigate the relationship between the set-operators and limit points of the associated filter FI.

References

  • [1] Sk. Selim, T. Noiri, S. Modak, “Ideals and the associated filters on topological spaces,” Eurasian Bulletin of Mathematics, vol. 2(3), pp. 80-85, 2019.
  • [2] D. Janković, T. R. Hamlett, “New topologies from old via ideals,” The American Mathematical Monthly, vol. 97, pp. 295-310, 1990.
  • [3] T. Natkaniec, “On I-continuity and I-semicontinuity points,” Mathematica Slovaca, vol. 36(3), pp. 297-312, 1986.
  • [4] K. Kuratowski, Topology, Vol. I, New York, Academic Press, 1966.
  • [5] E. Hayashi, “Topologies defined by local properties,” Mathematische Annalen, vol. 156, pp. 205-215, 1964.
  • [6] H. Hashimoto, “On the  -topology and its applications,” Fundamenta Mathematicae, vol. 91, pp. 5-10, 1976.
  • [7] T. R. Hamlett, D. Janković, “Ideals in topological spaces and the set operator Ψ,” Bollettino dell'Unione Matematica Italiana., vol. 7, no. (4-B), pp. 863-874, 1990.
  • [8] S. Modak, “Some new topologies on ideal topological spaces,” Proceedings of the National Academy of Sciences, India, Sect. A Phys. Sci., vol. 82(3), pp. 233-243, 2012.
  • [9] P. Samuel, “A topology formed from a given topology and ideal,” Journal of the London Mathematical Society, vol.10, pp. 409-416, 1975.
  • [10] A. Al-Omari, H. Al-Saadi, “A topology via ω-local functions in ideal spaces,” Mathematica, vol. 60(83), pp. 103-110, 2018.
  • [11] C. Bandhopadhya, S. Modak, “A new topology via Ψ-operator,” Proceedings of the National Academy of Sciences, India, vol. 76(A), no. IV, pp. 317-320, 2006.
  • [12] S. Modak, C. Bandyopadhyay, “A note on Ψ-operator,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 30(1), 43-48, 2007. [13] K. D. Joshi, Introduction to General Topology, Michigan: Wiley, 1983.
  • [14] N. Bourbaki, General Topology, Chapter 1-4, Verlag, Berlin, Heidelberg: Springer, 1989.
  • [15] S. Modak, Sk. Selim and Md. M. Islam, “Sets and functions in terms of local function,” Submitted.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Takashi Noiri

Sk Selım 0000-0002-4226-2004

Shyamapada Modak

Publication Date November 1, 2020
Published in Issue Year 2020 Volume: 17 Issue: 2

Cite

APA Noiri, T., Selım, S., & Modak, S. (2020). Convergence of the Associated Filters via Set-Operators. Cankaya University Journal of Science and Engineering, 17(2), 101-107.
AMA Noiri T, Selım S, Modak S. Convergence of the Associated Filters via Set-Operators. CUJSE. November 2020;17(2):101-107.
Chicago Noiri, Takashi, Sk Selım, and Shyamapada Modak. “Convergence of the Associated Filters via Set-Operators”. Cankaya University Journal of Science and Engineering 17, no. 2 (November 2020): 101-7.
EndNote Noiri T, Selım S, Modak S (November 1, 2020) Convergence of the Associated Filters via Set-Operators. Cankaya University Journal of Science and Engineering 17 2 101–107.
IEEE T. Noiri, S. Selım, and S. Modak, “Convergence of the Associated Filters via Set-Operators”, CUJSE, vol. 17, no. 2, pp. 101–107, 2020.
ISNAD Noiri, Takashi et al. “Convergence of the Associated Filters via Set-Operators”. Cankaya University Journal of Science and Engineering 17/2 (November 2020), 101-107.
JAMA Noiri T, Selım S, Modak S. Convergence of the Associated Filters via Set-Operators. CUJSE. 2020;17:101–107.
MLA Noiri, Takashi et al. “Convergence of the Associated Filters via Set-Operators”. Cankaya University Journal of Science and Engineering, vol. 17, no. 2, 2020, pp. 101-7.
Vancouver Noiri T, Selım S, Modak S. Convergence of the Associated Filters via Set-Operators. CUJSE. 2020;17(2):101-7.