Year 2020, Volume 17 , Issue 2, Pages 101 - 107 2020-11-01

                                                                                                                                                                                                                                                                                                             

Let (X, τ) be a topological space.     For a proper ideal I on (X, τ), the associated filter FI is defined and investigated in [1].    In this paper, we define several set-operators on an ideal topological space (X, τ, I) and investigate the relationship between the set-operators and limit points of the associated filter FI.

ideal, Filter, Associated filter, Limit Point of a Filter, Local Function
  • [1] Sk. Selim, T. Noiri, S. Modak, “Ideals and the associated filters on topological spaces,” Eurasian Bulletin of Mathematics, vol. 2(3), pp. 80-85, 2019.
  • [2] D. Janković, T. R. Hamlett, “New topologies from old via ideals,” The American Mathematical Monthly, vol. 97, pp. 295-310, 1990.
  • [3] T. Natkaniec, “On I-continuity and I-semicontinuity points,” Mathematica Slovaca, vol. 36(3), pp. 297-312, 1986.
  • [4] K. Kuratowski, Topology, Vol. I, New York, Academic Press, 1966.
  • [5] E. Hayashi, “Topologies defined by local properties,” Mathematische Annalen, vol. 156, pp. 205-215, 1964.
  • [6] H. Hashimoto, “On the  -topology and its applications,” Fundamenta Mathematicae, vol. 91, pp. 5-10, 1976.
  • [7] T. R. Hamlett, D. Janković, “Ideals in topological spaces and the set operator Ψ,” Bollettino dell'Unione Matematica Italiana., vol. 7, no. (4-B), pp. 863-874, 1990.
  • [8] S. Modak, “Some new topologies on ideal topological spaces,” Proceedings of the National Academy of Sciences, India, Sect. A Phys. Sci., vol. 82(3), pp. 233-243, 2012.
  • [9] P. Samuel, “A topology formed from a given topology and ideal,” Journal of the London Mathematical Society, vol.10, pp. 409-416, 1975.
  • [10] A. Al-Omari, H. Al-Saadi, “A topology via ω-local functions in ideal spaces,” Mathematica, vol. 60(83), pp. 103-110, 2018.
  • [11] C. Bandhopadhya, S. Modak, “A new topology via Ψ-operator,” Proceedings of the National Academy of Sciences, India, vol. 76(A), no. IV, pp. 317-320, 2006.
  • [12] S. Modak, C. Bandyopadhyay, “A note on Ψ-operator,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 30(1), 43-48, 2007. [13] K. D. Joshi, Introduction to General Topology, Michigan: Wiley, 1983.
  • [14] N. Bourbaki, General Topology, Chapter 1-4, Verlag, Berlin, Heidelberg: Springer, 1989.
  • [15] S. Modak, Sk. Selim and Md. M. Islam, “Sets and functions in terms of local function,” Submitted.
Primary Language en
Subjects Engineering
Published Date guz
Journal Section Articles
Authors

Author: Takashi NOİRİ
Institution: Yatsushiro National College of Technology
Country: Japan


Orcid: 0000-0002-4226-2004
Author: Sk SELIM
Institution: University of Gour Banga
Country: India


Author: Shyamapada MODAK (Primary Author)
Institution: University of Gour Banga
Country: India


Dates

Publication Date : November 1, 2020

Bibtex @research article { cankujse718352, journal = {Cankaya University Journal of Science and Engineering}, issn = {}, eissn = {2564-7954}, address = {}, publisher = {Cankaya University}, year = {2020}, volume = {17}, pages = {101 - 107}, doi = {}, title = {Convergence of the Associated Filters via Set-Operators}, key = {cite}, author = {Noi̇ri̇, Takashi and Selım, Sk and Modak, Shyamapada} }
APA Noi̇ri̇, T , Selım, S , Modak, S . (2020). Convergence of the Associated Filters via Set-Operators . Cankaya University Journal of Science and Engineering , 17 (2) , 101-107 . Retrieved from https://dergipark.org.tr/en/pub/cankujse/issue/57636/718352
MLA Noi̇ri̇, T , Selım, S , Modak, S . "Convergence of the Associated Filters via Set-Operators" . Cankaya University Journal of Science and Engineering 17 (2020 ): 101-107 <https://dergipark.org.tr/en/pub/cankujse/issue/57636/718352>
Chicago Noi̇ri̇, T , Selım, S , Modak, S . "Convergence of the Associated Filters via Set-Operators". Cankaya University Journal of Science and Engineering 17 (2020 ): 101-107
RIS TY - JOUR T1 - Convergence of the Associated Filters via Set-Operators AU - Takashi Noi̇ri̇ , Sk Selım , Shyamapada Modak Y1 - 2020 PY - 2020 N1 - DO - T2 - Cankaya University Journal of Science and Engineering JF - Journal JO - JOR SP - 101 EP - 107 VL - 17 IS - 2 SN - -2564-7954 M3 - UR - Y2 - 2020 ER -
EndNote %0 Cankaya University Journal of Science and Engineering Convergence of the Associated Filters via Set-Operators %A Takashi Noi̇ri̇ , Sk Selım , Shyamapada Modak %T Convergence of the Associated Filters via Set-Operators %D 2020 %J Cankaya University Journal of Science and Engineering %P -2564-7954 %V 17 %N 2 %R %U
ISNAD Noi̇ri̇, Takashi , Selım, Sk , Modak, Shyamapada . "Convergence of the Associated Filters via Set-Operators". Cankaya University Journal of Science and Engineering 17 / 2 (November 2020): 101-107 .
AMA Noi̇ri̇ T , Selım S , Modak S . Convergence of the Associated Filters via Set-Operators. CUJSE. 2020; 17(2): 101-107.
Vancouver Noi̇ri̇ T , Selım S , Modak S . Convergence of the Associated Filters via Set-Operators. Cankaya University Journal of Science and Engineering. 2020; 17(2): 101-107.
IEEE T. Noi̇ri̇ , S. Selım and S. Modak , "Convergence of the Associated Filters via Set-Operators", Cankaya University Journal of Science and Engineering, vol. 17, no. 2, pp. 101-107, Nov. 2020