Research Article
BibTex RIS Cite
Year 2023, Volume: 20 Issue: 2, 146 - 151, 01.11.2023

Abstract

References

  • [1] Z. Mladenovic, A. Johansson, B. Willman, K. Shahabi, E. Björn, and M. Ransjö "Soluble silica inhibits osteoclast formation and bone resorption in vitro" Acta Biomater. vol. 10, pp. 1406-1418, 2014.
  • [2] C.C.G. Silva, O.Z. Higa, J.C. Bressiani "Cytotoxic evaluation of silicon nitride-based ceramics" Mat. Sci. and Eng. C., vol. 24, no. 5, pp. 643-646, 2004.
  • [3] D. J. Gorth, S. Puckett, B. Ercan, T. J. Webster, M. Rahaman, and B. S. Bal "Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium" Int. J. Nanomedicine, vol. 7, pp. 4829-4840, 2012.
  • [4] R. Kue, A. Sohrabi, D. Nagle, C. Frondoza, and D. Hungerford " Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs" Biomaterials, vol. 20, pp. 1195-1201, 1999.
  • [5] P. Griss, E. Wener, and G. Heimke, "Alumina ceramic, bioglass, and silicon nitride: a comparative biocompatibility study" In: Mechanical Properties of Biomaterials. Edited by Hasting, G.W. and Williams, D. F., pp. 217-226, 1980.
  • [6] C. R. Howlett, E. Mccartney, and W. Ching, " The Effect of Silicon Nitride Ceramic on Rabbit Skeletal Cells and Tissue: An In Vitro and In Vivo Investigation" Clin Orthop. vol. 244, pp. 293–304, 1989.
  • [7] R. J. Mobbs, P. J. Rao, K. Phan, P. Hardcastle, W. J. Choy, E. R. McCartney, R. K. Druitt, C. A. L. Mouatt, and C. C. Sorrell, “Anterior Lumbar Interbody Fusion Using Reaction Bonded Silicon Nitride Implants: Long-Term Case Series of the First Synthetic Anterior Lumbar Interbody Fusion Spacer Implanted in Humans,” World Neurosurg, vol. 120, pp. 256-264, 2018.
  • [8] F. Mussano, T. Genova, P. Rivolo, P. Mandracci, L. Munaron, M. G. Faga, and S. Carossa, "Role of surface finishing on the in vitro biological properties of a silicon nitride–titanium nitride (Si3N4 –TiN) composite," J. Mater. Sci. vol. 52, pp. 467–477, 2017.
  • [9] M. Hnatko, M. Hičák, M. Labudová, D. Galusková, J. Sedláček, Z. Lenčéš, and P. Šajgalík, "Bioactive silicon nitride by surface thermal treatment," J. Eur. Ceram. Soc. vol. 40, no. 5, pp. 1848-1858, 2020.
  • [10] E. Marin, S. Horiguchi, M. Zanocco, F. Boschetto, A. Rondinella, W. Zhu, R. M. Bock, B. J. McEntire, T. Adachi, B. S. Bal, and G. Pezzotti "Bioglass functionalization of laser-patterned bioceramic surfaces and their enhanced bioactivity," Heliyon, vol. 4, pp. e01016, 2018.
  • [11] E. Salgueiredo, M. Vila, M. A. Silva, M. A. Lopes, J. D. Santos, F. M. Costa, R. F. Silva, P. S. Gomes, and M. H. Fernandes, "Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applications," Diam. Relat. Mater. vol. 17, no. 4–5, pp. 878-881, 2008.
  • [12] C. C. G. Silva, E. C. S. Rigo ECS, J. Marchi, A. H. A. Bressiani, and J. C. Bressiani, "Hydroxyapatite Coating on Silicon Nitride Surfaces Using the Biomimetic Method," Mater. Res. vol. 11, no. 1, pp. 47-50, 2008.
  • [13] F. Baino, "Quantifying the Adhesion of Silicate Glass-Ceramic Coatings onto Alumina for Biomedical Applications," Materials (Basel), vol. 12, no. 11, pp. 1754, 2019.
  • [14] W. S. W. Harun, R. I. M. Asri, J. Alias, F. H. Zulkifli, K. Kadirgama, S. A. C. Ghani, J. H. M. Shariffuddin, "A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials," Ceram. Int., vol. 44,no. 2, pp. 1250-1268, 2018.
  • [15] P. Usinskas, Z. Stankeviciute, G. Niaura, J. Maminskas, G. Juodzbalys, and A. Kareiva, "Sol–gel processing of calcium hydroxyapatite thin films on silicon nitride (Si3N4) substrate," J. Solgel Sci. Technol. vol. 83, no. 2, pp. 268-274, 2017.
  • [16] H. Mandal, F. Kara, A. Kara A, S. Turan, U.S. Patent No. 7,064,095. Washington, DC: U.S. Patent and Trademark Office. 2006.
  • [17] T. Kokubo, and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?" Biomaterials, vol. 27, pp. 2907–2915, 2006.
  • [18] E. C. S. Rigo, L. A. Santos, R. G. Carrodeguas, and A. O. Boschi, "Bonelike apatite coating on Ti6Al4V: novel nucleation process using sodium silicate solution," Mater. Sci. Forum., vol. 416, pp. 658-662, 2003.
  • [19] P. F. Becher, G. S. Painter, E. Y. Sun, C. H. Hsue, and M. J. Lance, "The importance of amorphous intergranular films in self-reinforced Si3N4 ceramics," Acta Mater. vol. 48, no. 18–19, pp. 4493–4499, 2000.

Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method

Year 2023, Volume: 20 Issue: 2, 146 - 151, 01.11.2023

Abstract

Silicon Nitride (Si3N4) ceramics hold significant promise as materials for biomedical implants, but their biocompatibility and osseointegration performance can still be improved to improve host tissue-implant interaction. One approach to improve interaction involves the application of a Hydroxyapatite (HAp) Ca10(PO4)(OH)2 coating. Various techniques, including solid-state reactions, hydrothermal methods, sol gel processes, and biomimetic approaches, have been employed for this purpose, achieving partial success in mimicking bone-like apatite formation. Biomimetic coating, among these methods, is particularly valuable for enhancing the biocompatibility of different orthopedic implants. It can be applied not only to ceramics but also to materials featuring active chemical groups on their surfaces, such as metals and organic polymers, which serve as nucleation sites for mineralization. In this study, Si3N4 and SiAlON ceramics were compared regarding their potential to deposit hydroxyapatite in simulated body fluid (SBF) with varying concentrations. The apatite layers formed on the surfaces after immersion in 1.5 SBF were analyzed using a Scanning Electron Microscope (SEM) and energy-dispersive X-ray (EDX) analysis. Consequently, Ca/P ratios matching nonstoichiometric biological apatite values were observed on surfaces exposed to 1.5 SBF. Microstructure studies revealed the widespread formation of a typical HAp structure in Si3N4 samples, whereas it was less prevalent in SiAlON samples. This behavior is discussed, particularly considering the grain boundary phase's influence on HAp formation tendency.

Supporting Institution

TÜBİTAK (2219)

References

  • [1] Z. Mladenovic, A. Johansson, B. Willman, K. Shahabi, E. Björn, and M. Ransjö "Soluble silica inhibits osteoclast formation and bone resorption in vitro" Acta Biomater. vol. 10, pp. 1406-1418, 2014.
  • [2] C.C.G. Silva, O.Z. Higa, J.C. Bressiani "Cytotoxic evaluation of silicon nitride-based ceramics" Mat. Sci. and Eng. C., vol. 24, no. 5, pp. 643-646, 2004.
  • [3] D. J. Gorth, S. Puckett, B. Ercan, T. J. Webster, M. Rahaman, and B. S. Bal "Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium" Int. J. Nanomedicine, vol. 7, pp. 4829-4840, 2012.
  • [4] R. Kue, A. Sohrabi, D. Nagle, C. Frondoza, and D. Hungerford " Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs" Biomaterials, vol. 20, pp. 1195-1201, 1999.
  • [5] P. Griss, E. Wener, and G. Heimke, "Alumina ceramic, bioglass, and silicon nitride: a comparative biocompatibility study" In: Mechanical Properties of Biomaterials. Edited by Hasting, G.W. and Williams, D. F., pp. 217-226, 1980.
  • [6] C. R. Howlett, E. Mccartney, and W. Ching, " The Effect of Silicon Nitride Ceramic on Rabbit Skeletal Cells and Tissue: An In Vitro and In Vivo Investigation" Clin Orthop. vol. 244, pp. 293–304, 1989.
  • [7] R. J. Mobbs, P. J. Rao, K. Phan, P. Hardcastle, W. J. Choy, E. R. McCartney, R. K. Druitt, C. A. L. Mouatt, and C. C. Sorrell, “Anterior Lumbar Interbody Fusion Using Reaction Bonded Silicon Nitride Implants: Long-Term Case Series of the First Synthetic Anterior Lumbar Interbody Fusion Spacer Implanted in Humans,” World Neurosurg, vol. 120, pp. 256-264, 2018.
  • [8] F. Mussano, T. Genova, P. Rivolo, P. Mandracci, L. Munaron, M. G. Faga, and S. Carossa, "Role of surface finishing on the in vitro biological properties of a silicon nitride–titanium nitride (Si3N4 –TiN) composite," J. Mater. Sci. vol. 52, pp. 467–477, 2017.
  • [9] M. Hnatko, M. Hičák, M. Labudová, D. Galusková, J. Sedláček, Z. Lenčéš, and P. Šajgalík, "Bioactive silicon nitride by surface thermal treatment," J. Eur. Ceram. Soc. vol. 40, no. 5, pp. 1848-1858, 2020.
  • [10] E. Marin, S. Horiguchi, M. Zanocco, F. Boschetto, A. Rondinella, W. Zhu, R. M. Bock, B. J. McEntire, T. Adachi, B. S. Bal, and G. Pezzotti "Bioglass functionalization of laser-patterned bioceramic surfaces and their enhanced bioactivity," Heliyon, vol. 4, pp. e01016, 2018.
  • [11] E. Salgueiredo, M. Vila, M. A. Silva, M. A. Lopes, J. D. Santos, F. M. Costa, R. F. Silva, P. S. Gomes, and M. H. Fernandes, "Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applications," Diam. Relat. Mater. vol. 17, no. 4–5, pp. 878-881, 2008.
  • [12] C. C. G. Silva, E. C. S. Rigo ECS, J. Marchi, A. H. A. Bressiani, and J. C. Bressiani, "Hydroxyapatite Coating on Silicon Nitride Surfaces Using the Biomimetic Method," Mater. Res. vol. 11, no. 1, pp. 47-50, 2008.
  • [13] F. Baino, "Quantifying the Adhesion of Silicate Glass-Ceramic Coatings onto Alumina for Biomedical Applications," Materials (Basel), vol. 12, no. 11, pp. 1754, 2019.
  • [14] W. S. W. Harun, R. I. M. Asri, J. Alias, F. H. Zulkifli, K. Kadirgama, S. A. C. Ghani, J. H. M. Shariffuddin, "A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials," Ceram. Int., vol. 44,no. 2, pp. 1250-1268, 2018.
  • [15] P. Usinskas, Z. Stankeviciute, G. Niaura, J. Maminskas, G. Juodzbalys, and A. Kareiva, "Sol–gel processing of calcium hydroxyapatite thin films on silicon nitride (Si3N4) substrate," J. Solgel Sci. Technol. vol. 83, no. 2, pp. 268-274, 2017.
  • [16] H. Mandal, F. Kara, A. Kara A, S. Turan, U.S. Patent No. 7,064,095. Washington, DC: U.S. Patent and Trademark Office. 2006.
  • [17] T. Kokubo, and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?" Biomaterials, vol. 27, pp. 2907–2915, 2006.
  • [18] E. C. S. Rigo, L. A. Santos, R. G. Carrodeguas, and A. O. Boschi, "Bonelike apatite coating on Ti6Al4V: novel nucleation process using sodium silicate solution," Mater. Sci. Forum., vol. 416, pp. 658-662, 2003.
  • [19] P. F. Becher, G. S. Painter, E. Y. Sun, C. H. Hsue, and M. J. Lance, "The importance of amorphous intergranular films in self-reinforced Si3N4 ceramics," Acta Mater. vol. 48, no. 18–19, pp. 4493–4499, 2000.
There are 19 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering
Journal Section Articles
Authors

Şeniz Reyhan Kuşhan Akın 0000-0002-0287-1139

Publication Date November 1, 2023
Submission Date October 19, 2023
Acceptance Date October 26, 2023
Published in Issue Year 2023 Volume: 20 Issue: 2

Cite

APA Kuşhan Akın, Ş. R. (2023). Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method. Cankaya University Journal of Science and Engineering, 20(2), 146-151.
AMA Kuşhan Akın ŞR. Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method. CUJSE. November 2023;20(2):146-151.
Chicago Kuşhan Akın, Şeniz Reyhan. “Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method”. Cankaya University Journal of Science and Engineering 20, no. 2 (November 2023): 146-51.
EndNote Kuşhan Akın ŞR (November 1, 2023) Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method. Cankaya University Journal of Science and Engineering 20 2 146–151.
IEEE Ş. R. Kuşhan Akın, “Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method”, CUJSE, vol. 20, no. 2, pp. 146–151, 2023.
ISNAD Kuşhan Akın, Şeniz Reyhan. “Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method”. Cankaya University Journal of Science and Engineering 20/2 (November 2023), 146-151.
JAMA Kuşhan Akın ŞR. Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method. CUJSE. 2023;20:146–151.
MLA Kuşhan Akın, Şeniz Reyhan. “Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method”. Cankaya University Journal of Science and Engineering, vol. 20, no. 2, 2023, pp. 146-51.
Vancouver Kuşhan Akın ŞR. Hydroxyapatite Deposition on Silicon Nitride and SiAlON Ceramic Substrates via Biomimetic Method. CUJSE. 2023;20(2):146-51.